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  graphed in the accompanying figure approximates the step func-
tion s = k(t) shown there. Yet the derivative of h is nothing like 
the derivative of k.
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  a. Graph dk>dt (where defined) over 3-p, p4 .
  b. Find dh>dt.

  c. Graph dh>dt to see how badly the graph fits the graph of 
dk>dt. Comment on what you see.

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the 
form y = ƒ(x) that expresses y explicitly in terms of the variable x. We have learned rules 
for differentiating functions defined in this way. Another situation occurs when we encoun-
ter equations like

x3 + y3 - 9xy = 0, y2 - x = 0, or x2 + y2 - 25 = 0.

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the 
variables x and y. In some cases we may be able to solve such an equation for y as an 
explicit function (or even several functions) of x. When we cannot put an equation 
F(x, y) = 0 in the form y = ƒ(x) to differentiate it in the usual way, we may still be able 
to find dy>dx by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function of 
x to calculate dy>dx in the usual way. Then we differentiate the equations implicitly, and find 
the derivative to compare the two methods. Following the examples, we summarize the steps 
involved in the new method. In the examples and exercises, it is always assumed that the 
given equation determines y implicitly as a differentiable function of x so that dy>dx exists.

EXAMPLE 1 Find dy>dx if y2 = x.

Solution The equation y2 = x defines two differentiable functions of x that we can actu-
ally find, namely y1 = 2x and y2 = -2x (Figure 3.29). We know how to calculate the 
derivative of each of these for x 7 0:

dy1

dx
= 1

21x
and

dy2

dx
= - 1

21x
.

But suppose that we knew only that the equation y2 = x defined y as one or more differen-
tiable functions of x for x 7 0 without knowing exactly what these functions were. Could 
we still find dy>dx?

The answer is yes. To find dy>dx, we simply differentiate both sides of the equation 
y2 = x with respect to x, treating y = ƒ(x) as a differentiable function of x:

y2 = x The Chain Rule gives 
d
dx

(y2) =

d
dx
3ƒ(x)42 = 2ƒ(x)ƒ′(x) = 2y

dy

dx
.2y

dy
dx

= 1

dy
dx

= 1
2y

.
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FIGURE 3.28 The curve 
x3 + y3 - 9xy = 0 is not the graph of any 
one function of x. The curve can, however, be 
divided into separate arcs that are the graphs 
of functions of x. This particular curve, called 
a folium, dates to Descartes in 1638.
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This one formula gives the derivatives we calculated for both explicit solutions y1 = 2x
and y2 = -2x:

dy1

dx
= 1

2y1
= 1

21x
and

dy2

dx
= 1

2y2
= 1

21-1x2 = - 1
21x

.

EXAMPLE 2  Find the slope of the circle x2 + y2 = 25 at the point (3, -4).

Solution The circle is not the graph of a single function of x. Rather, it is the combined 
graphs of two differentiable functions, y1 = 225 - x2 and y2 = -225 - x2 (Figure 
3.30). The point (3, -4) lies on the graph of y2, so we can find the slope by calculating the 
derivative directly, using the Power Chain Rule:

dy2

dx
`
x=3

= - -2x

2225 - x2
`
x=3

= - -6

2225 - 9
= 3

4
.

d
dx
1- (25 - x2)1>22 =

- 1
2

(25 - x2)-1>2(-2x)

We can solve this problem more easily by differentiating the given equation of the 
circle implicitly with respect to x:

d
dx

(x2) + d
dx

(y2) = d
dx

(25)

 2x + 2y
dy
dx

= 0 See Example 1.

dy
dx

= - x
y .

The slope at (3, -4) is - x
y `

(3, -4)
= - 3

-4
= 3

4
.

Notice that unlike the slope formula for dy2>dx, which applies only to points below 
the x-axis, the formula dy>dx = -x>y applies everywhere the circle has a slope; that is, at 
all circle points (x, y) where y ≠ 0. Notice also that the derivative involves both variables 
x and y, not just the independent variable x.

To calculate the derivatives of other implicitly defined functions, we proceed as in 
Examples 1 and 2: We treat y as a differentiable implicit function of x and apply the usual 
rules to differentiate both sides of the defining equation.
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FIGURE 3.29 The equation y2 - x = 0,
or y2 = x as it is usually written, defines two 
differentiable functions of x on the interval 
x 7 0. Example 1 shows how to find the 
derivatives of these functions without solving 
the equation y2 = x for y.
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y2 = −"25 − x2

FIGURE 3.30 The circle combines the 
graphs of two functions. The graph of y2

is the lower semicircle and passes through 
(3, -4).
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EXAMPLE 3 Find dy>dx if y2 = x2 + sin xy (Figure 3.31).

Solution We differentiate the equation implicitly.

y2 = x2 + sin xy

d
dx
1y22 = d

dx
1x22 + d

dx
1sin xy2 Differentiate both sides with 

respect to x c

2y
dy
dx

= 2x + (cos xy)
d
dx

(xy)
ctreating y as a function of 
x and using the Chain Rule. 

2y
dy
dx

= 2x + (cos xy)ay + x
dy
dx
b Treat xy as a product.

2y
dy
dx

- (cos xy)ax dy
dx
b = 2x + (cos xy)y Collect terms with dy>dx.

(2y - x cos xy)
dy
dx

= 2x + y cos xy

dy
dx

=
2x + y cos xy
2y - x cos xy

Solve for dy>dx.

Notice that the formula for dy>dx applies everywhere that the implicitly defined curve has 
a slope. Notice again that the derivative involves both variables x and y, not just the inde-
pendent variable x.

Derivatives of Higher Order

Implicit differentiation can also be used to find higher derivatives.

EXAMPLE 4 Find d2y>dx2 if 2x3 - 3y2 = 8.

Solution To start, we differentiate both sides of the equation with respect to x in order to 
find y′ = dy>dx.

d
dx

(2x3 - 3y2) = d
dx

(8)

6x2 - 6yy′ = 0 Treat y as a function of x.

y′ = x2

y , when y ≠ 0 Solve for y′.

We now apply the Quotient Rule to find y″.

y″ = d
dx
ax2

y b =
2xy - x2y′

y2 = 2x
y - x2

y2
# y′

Finally, we substitute y′ = x2>y to express y″ in terms of x and y.

y″ = 2x
y - x2

y2 ax
2

y b = 2x
y - x4

y3 , when y ≠ 0

Implicit Differentiation
1. Differentiate both sides of the equation with respect to x, treating y as a dif-

ferentiable function of x.

2. Collect the terms with dy>dx on one side of the equation and solve for dy>dx.

y2 = x2 + sin xy

y
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0 2 4−2−4
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−4

FIGURE 3.31 The graph of the equation 
in Example 3.
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Lenses, Tangents, and Normal Lines

In the law that describes how light changes direction as it enters a lens, the important 
angles are the angles the light makes with the line perpendicular to the surface of the 
lens at the point of entry (angles A and B in Figure 3.32). This line is called the normal
to the surface at the point of entry. In a profile view of a lens like the one in 
Figure 3.32, the normal is the line perpendicular (also said to be orthogonal) to the 
tangent of the profile curve at the point of entry.

EXAMPLE 5  Show that the point (2, 4) lies on the curve x3 + y3 - 9xy = 0. Then 
find the tangent and normal to the curve there (Figure 3.33).

Solution The point (2, 4) lies on the curve because its coordinates satisfy the equation 
given for the curve: 23 + 43 - 9(2) (4) = 8 + 64 - 72 = 0.

To find the slope of the curve at (2, 4), we first use implicit differentiation to find a 
formula for dy>dx:

x3 + y3 - 9xy = 0

d
dx

 (x3) + d
dx

(y3) - d
dx

 (9xy) = d
dx

 (0)

 3x2 + 3y2
dy
dx

- 9ax dy
dx

+ y
dx
dx
b = 0

Differentiate both sides 
with respect to x.

(3y2 - 9x)
dy
dx

+ 3x2 - 9y = 0
Treat xy as a product and y
as a function of x.

 3(y2 - 3x)
dy
dx

= 9y - 3x2

dy
dx

=
3y - x2

y2 - 3x
. Solve for dy>dx.

We then evaluate the derivative at (x, y) = (2, 4):

dy
dx
`
(2, 4)

=
3y - x2

y2 - 3x
`
(2, 4)

=
3(4) - 22

42 - 3(2)
= 8

10
= 4

5
.

The tangent at (2, 4) is the line through (2, 4) with slope 4>5:

y = 4 + 4
5

 (x - 2)

y = 4
5

x + 12
5

.

The normal to the curve at (2, 4) is the line perpendicular to the tangent there, the line 
through (2, 4) with slope -5>4:

y = 4 - 5
4

 (x - 2)

y = - 5
4

x + 13
2

.

A

Normal line

Light ray
Tangent

Point of entry
P

B

Curve of lens
surface

FIGURE 3.32 The profile of a lens, 
showing the bending (refraction) of a 
ray of light as it passes through the lens 
surface.
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FIGURE 3.33 Example 5 shows how to 
find equations for the tangent and normal 
to the folium of Descartes at (2, 4).
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Differentiating Implicitly
Use implicit differentiation to find dy>dx in Exercises 1–16.

1. x2y + xy2 = 6 2. x3 + y3 = 18xy

3. 2xy + y2 = x + y 4. x3 - xy + y3 = 1

5. x2(x - y)2 = x2 - y2 6. (3xy + 7)2 = 6y

7. y2 = x - 1
x + 1

8. x3 =
2x - y
x + 3y

9. x = sec y 10. xy = cot (xy)

11. x + tan (xy) = 0 12. x4 + sin y = x3y2

13. y sin a1yb = 1 - xy 14. x cos (2x + 3y) = y sin x

15. e2x = sin (x + 3y) 16. ex2y = 2x + 2y

Find dr>du in Exercises 17–20.

17. u1>2 + r1>2 = 1 18. r - 22u = 3
2
u2>3 + 4

3
u3>4

19. sin (ru) = 1
2

20. cos r + cot u = eru

Second Derivatives
In Exercises 21–26, use implicit differentiation to find dy>dx and then 
d2y>dx2.

21. x2 + y2 = 1 22. x2>3 + y2>3 = 1

23. y2 = ex2 + 2x 24. y2 - 2x = 1 - 2y

25. 21y = x - y 26. xy + y2 = 1

27. If x3 + y3 = 16, find the value of d2y>dx2 at the point (2, 2).

28. If xy + y2 = 1, find the value of d2y>dx2 at the point (0, -1).

In Exercises 29 and 30, find the slope of the curve at the given points.

29. y2 + x2 = y4 - 2x at (-2, 1) and (-2, -1)

30. (x2 + y2)2 = (x - y)2 at (1, 0) and (1, -1)

Slopes, Tangents, and Normals
In Exercises 31–40, verify that the given point is on the curve and find 
the lines that are (a) tangent and (b) normal to the curve at the given 
point.

31. x2 + xy - y2 = 1, (2, 3)

32. x2 + y2 = 25, (3, -4)

33. x2y2 = 9, (-1, 3)

34. y2 - 2x - 4y - 1 = 0, (-2, 1)

35. 6x2 + 3xy + 2y2 + 17y - 6 = 0, (-1, 0)

36. x2 - 23xy + 2y2 = 5, 123, 22
37. 2xy + p sin y = 2p, (1, p>2)

38. x sin 2y = y cos 2x, (p>4, p>2)

39. y = 2 sin (px - y), (1, 0)

40. x2 cos2 y - sin y = 0, (0, p)

41. Parallel tangents Find the two points where the curve 
x2 + xy + y2 = 7 crosses the x-axis, and show that the tangents 
to the curve at these points are parallel. What is the common 
slope of these tangents?

42. Normals parallel to a line Find the normals to the curve 
xy + 2x - y = 0 that are parallel to the line 2x + y = 0.

43. The eight curve Find the slopes of the curve y4 = y2 - x2 at 
the two points shown here.

x

y

0

1

−1

y4 = y2 − x2

"

3
4

"

3
2

,

"

3
4

1
2

,
a b

a b

44. The cissoid of Diocles (from about 200 b.c.) Find equations 
for the tangent and normal to the cissoid of Diocles y2(2 - x) = x3

at (1, 1).

x

y

1

1

(1, 1)

0

y2(2 − x) = x3

45. The devil’s curve (Gabriel Cramer, 1750) Find the slopes of 
the devil’s curve y4 - 4y2 = x4 - 9x2 at the four indicated 
points.

x

y

3−3

2

−2

(3, 2)

(3, −2)

(−3, 2)

(−3, −2)

y4 − 4y2 = x4 − 9x2

Exercises 3.7
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46. The folium of Descartes (See Figure 3.28.)

a. Find the slope of the folium of Descartes x3 + y3 - 9xy = 0
at the points (4, 2) and (2, 4).

b. At what point other than the origin does the folium have a 
horizontal tangent?

c. Find the coordinates of the point A in Figure 3.28 where the 
folium has a vertical tangent.

Theory and Examples
47. Intersecting normal The line that is normal to the curve 

x2 + 2xy - 3y2 = 0 at (1, 1) intersects the curve at what other 
point?

48. Power rule for rational exponents Let p and q be integers 
with q 7 0. If y = x p>q, differentiate the equivalent equation 
yq = xp implicitly and show that, for y ≠ 0,

d
dx

x p>q =
p
q x(p>q)-1.

49. Normals to a parabola Show that if it is possible to draw three 
normals from the point (a, 0) to the parabola x = y2 shown in the 
accompanying diagram, then a must be greater than 1>2. One of 
the normals is the x-axis. For what value of a are the other two 
normals perpendicular?

x

y

0 (a, 0)

x = y2

50. Is there anything special about the tangents to the curves y2 = x3

and 2x2 + 3y2 = 5 at the points (1, {1)? Give reasons for your 
answer.

x

y

0

(1, 1)

y2 = x3

2x2 + 3y2 = 5

(1, −1)

51. Verify that the following pairs of curves meet orthogonally.

a. x2 + y2 = 4, x2 = 3y2

b. x = 1 - y2, x = 1
3

y2

52. The graph of y2 = x3 is called a semicubical parabola and is 
shown in the accompanying figure. Determine the constant b so 
that the line y = -1

3 x + b meets this graph orthogonally.

x

y

0

y2 = x3

y = − x + b
1
3

In Exercises 53 and 54, find both dy>dx (treating y as a differentiable 
function of x) and dx>dy (treating x as a differentiable function of y).
How do dy>dx and dx>dy seem to be related? Explain the relationship 
geometrically in terms of the graphs.

53. xy3 + x2y = 6

54. x3 + y2 = sin2 y

55. Derivative of arcsine Assume that y = sin-1 x is a differentia-
ble function of x. By differentiating the equation x = sin y
implicitly, show that dy>dx = 1>21 - x2 .

56. Use the formula in Exercise 55 to find dy>dx if

a. y = (sin-1 x)2 b. y = sin-1 a1xb .

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 57–64.

a. Plot the equation with the implicit plotter of a CAS. Check to 
see that the given point P satisfies the equation.

b. Using implicit differentiation, find a formula for the deriva-
tive dy>dx and evaluate it at the given point P.

c. Use the slope found in part (b) to find an equation for the tan-
gent line to the curve at P. Then plot the implicit curve and 
tangent line together on a single graph.

57. x3 - xy + y3 = 7, P (2, 1)

58. x5 + y3x + yx2 + y4 = 4, P (1, 1)

59. y2 + y = 2 + x
1 - x

, P (0, 1)

60. y3 + cos xy = x2, P (1, 0)

61. x + tan ayxb = 2, P a1,
p

4
b

62. xy3 + tan (x + y) = 1, P ap
4

, 0b
63. 2y2 + (xy)1>3 = x2 + 2, P (1, 1)

64. x21 + 2y + y = x2, P (1, 0)

T
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3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that 
function. We defined there the natural logarithm function ƒ-1(x) = ln x as the inverse of the 
natural exponential function ƒ(x) = ex. This is one of the most important function-inverse 
pairs in mathematics and science. We learned how to differentiate the exponential function 
in Section 3.3. Here we learn a rule for differentiating the inverse of a differentiable func-
tion and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function ƒ(x) = (1>2)x + 1 as ƒ-1(x) = 2x - 2 in 
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we 
calculate their derivatives, we see that

d
dx

ƒ(x) = d
dx
a1

2
x + 1b = 1

2

d
dx

ƒ-1(x) = d
dx

(2x - 2) = 2.

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of 
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the 
line y = x always inverts the line’s slope. If the original line has slope m ≠ 0, the 
reflected line has slope 1 >m.

x

y

−2

1

−2

1

y = 2x − 2
y = x

y = x + 11
2

FIGURE 3.34 Graphing a line and its 
inverse together shows the graphs’ sym-
metry with respect to the line y = x. The 
slopes are reciprocals of each other.

x

y

0 a
x

y

0

b = f (a) (a, b)

y = f (x)

(b, a)

y = f –1(x)

b

a = f –1(b)

The slopes are reciprocal: ( f –1)′(b) = or ( f –1)′(b) =1
f ′(a)

1
f ′( f –1(b))

FIGURE 3.35 The graphs of inverse functions have recipro-
cal slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and ƒ -1 holds for other functions 
as well, but we must be careful to compare slopes at corresponding points. If the slope of 
y = ƒ(x) at the point (a, ƒ(a)) is ƒ′(a) and ƒ′(a) ≠ 0, then the slope of y = ƒ -1(x) at the 
point (ƒ(a), a) is the reciprocal 1>ƒ′(a) (Figure 3.35). If we set b = ƒ(a), then

(ƒ -1)′(b) = 1
ƒ′(a)

= 1
ƒ′(ƒ -1(b))

.

If y = ƒ(x) has a horizontal tangent line at (a, ƒ(a)), then the inverse function ƒ -1 has a 
vertical tangent line at (ƒ(a), a), and this infinite slope implies that ƒ -1 is not differentia-
ble at ƒ(a). Theorem 3 gives the conditions under which ƒ -1 is differentiable in its domain 
(which is the same as the range of ƒ).
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