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3.8 Derivatives of Inverse Functions and Logarithms

In Section 1.6 we saw how the inverse of a function undoes, or inverts, the effect of that 
function. We defined there the natural logarithm function ƒ-1(x) = ln x as the inverse of the 
natural exponential function ƒ(x) = ex. This is one of the most important function-inverse 
pairs in mathematics and science. We learned how to differentiate the exponential function 
in Section 3.3. Here we learn a rule for differentiating the inverse of a differentiable func-
tion and we apply the rule to find the derivative of the natural logarithm function.

Derivatives of Inverses of Differentiable Functions

We calculated the inverse of the function ƒ(x) = (1>2)x + 1 as ƒ-1(x) = 2x - 2 in 
Example 3 of Section 1.6. Figure 3.34 shows again the graphs of both functions. If we 
calculate their derivatives, we see that

d
dx

ƒ(x) = d
dx
a1

2
x + 1b = 1

2

d
dx

ƒ-1(x) = d
dx

(2x - 2) = 2.

The derivatives are reciprocals of one another, so the slope of one line is the reciprocal of 
the slope of its inverse line. (See Figure 3.34.)

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the 
line y = x always inverts the line’s slope. If the original line has slope m ≠ 0, the 
reflected line has slope 1 >m.

x

y

−2

1

−2

1

y = 2x − 2
y = x

y = x + 11
2

FIGURE 3.34 Graphing a line and its 
inverse together shows the graphs’ sym-
metry with respect to the line y = x. The 
slopes are reciprocals of each other.
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FIGURE 3.35 The graphs of inverse functions have recipro-
cal slopes at corresponding points.

The reciprocal relationship between the slopes of ƒ and ƒ -1 holds for other functions 
as well, but we must be careful to compare slopes at corresponding points. If the slope of 
y = ƒ(x) at the point (a, ƒ(a)) is ƒ′(a) and ƒ′(a) ≠ 0, then the slope of y = ƒ -1(x) at the 
point (ƒ(a), a) is the reciprocal 1>ƒ′(a) (Figure 3.35). If we set b = ƒ(a), then

(ƒ -1)′(b) = 1
ƒ′(a)

= 1
ƒ′(ƒ -1(b))

.

If y = ƒ(x) has a horizontal tangent line at (a, ƒ(a)), then the inverse function ƒ -1 has a 
vertical tangent line at (ƒ(a), a), and this infinite slope implies that ƒ -1 is not differentia-
ble at ƒ(a). Theorem 3 gives the conditions under which ƒ -1 is differentiable in its domain 
(which is the same as the range of ƒ).
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Theorem 3 makes two assertions. The first of these has to do with the conditions 
under which ƒ-1 is differentiable; the second assertion is a formula for the derivative of 
ƒ-1 when it exists. While we omit the proof of the first assertion, the second one is proved 
in the following way:

 ƒ(ƒ-1(x) ) = x Inverse function relationship

d
dx

 ƒ(ƒ-1(x) ) = 1 Differentiating both sides

 ƒ′(ƒ-1(x) ) # d
dx

 ƒ-1(x) = 1 Chain Rule

d
dx

 ƒ-1(x) = 1
ƒ′(ƒ-1(x) )

. Solving for the derivative

EXAMPLE 1  The function ƒ(x) = x2, x 7 0 and its inverse ƒ -1(x) = 2x have 
derivatives ƒ′(x) = 2x and (ƒ -1)′(x) = 1>122x2.

Let’s verify that Theorem 3 gives the same formula for the derivative of ƒ -1(x):

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

= 1
2(ƒ -1(x) )

ƒ′(x) = 2x with x replaced 
by ƒ -1(x)

= 1
2(1x)

.

Theorem 3 gives a derivative that agrees with the known derivative of the square root 
function.

Let’s examine Theorem 3 at a specific point. We pick x = 2 (the number a) and 
ƒ(2) = 4 (the value b). Theorem 3 says that the derivative of ƒ at 2, which is ƒ′(2) = 4,
and the derivative of ƒ -1 at ƒ(2), which is (ƒ -1)′(4), are reciprocals. It states that

(ƒ -1)′(4) = 1
ƒ′(ƒ -1(4) )

= 1
ƒ′(2)

= 1
2x
`
x=2

= 1
4

.

See Figure 3.36.

We will use the procedure illustrated in Example 1 to calculate formulas for the derivatives 
of many inverse functions throughout this chapter. Equation (1) sometimes enables us to 
find specific values of dƒ -1>dx without knowing a formula for ƒ -1.

THEOREM 3—The Derivative Rule for Inverses If ƒ has an interval I as do-
main and ƒ′(x) exists and is never zero on I, then ƒ -1 is differentiable at every 
point in its domain (the range of ƒ). The value of (ƒ -1)′ at a point b in the domain 
of ƒ -1 is the reciprocal of the value of ƒ′ at the point a = ƒ -1(b):

(ƒ -1)′(b) = 1
ƒ′(ƒ-1(b) )

(1)

or

dƒ -1

dx
2
x=b

= 1
dƒ
dx

2 .
x=ƒ -1(b)
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FIGURE 3.36 The derivative of 
ƒ-1(x) = 1x at the point (4, 2) is the 
reciprocal of the derivative of ƒ(x) = x2

at (2, 4) (Example 1).
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EXAMPLE 2 Let ƒ(x) = x3 - 2, x 7 0. Find the value of dƒ -1>dx at x = 6 = ƒ(2)
without finding a formula for ƒ -1(x).

Solution We apply Theorem 3 to obtain the value of the derivative of ƒ -1 at x = 6:

dƒ
dx

2
x=2

= 3x2 `
x=2

= 12

dƒ -1

dx
2
x=ƒ(2)

= 1
dƒ
dx

2
x=2

= 1
12

. Eq. (1)

See Figure 3.37.

Derivative of the Natural Logarithm Function

Since we know the exponential function ƒ(x) = ex is differentiable everywhere, we can 
apply Theorem 3 to find the derivative of its inverse ƒ -1(x) = ln x:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

Theorem 3

= 1
eƒ -1(x)

ƒ′(u) = eu

= 1
eln x x 7 0

= 1
x . Inverse function relationship

Alternate Derivation Instead of applying Theorem 3 directly, we can find the derivative 
of y = ln x using implicit differentiation, as follows:

y = ln x x 7 0

ey = x Inverse function relationship

d
dx

(ey) = d
dx

(x) Differentiate implicitly.

ey
dy
dx

= 1 Chain Rule

dy
dx

= 1
ey = 1

x . ey = x

No matter which derivation we use, the derivative of y = ln x with respect to x is

d
dx

(ln x) = 1
x , x 7 0.

The Chain Rule extends this formula to positive functions u(x):
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FIGURE 3.37 The derivative of 
ƒ(x) = x3 - 2 at x = 2 tells us the 
derivative of ƒ -1 at x = 6 (Example 2).

d
dx

ln u = 1
u

du
dx

, u 7 0. (2)
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EXAMPLE 3  We use Equation (2) to find derivatives.

(a) d
dx

ln 2x = 1
2x

d
dx

(2x) = 1
2x

(2) = 1
x , x 7 0

(b) Equation (2) with u = x2 + 3gives

d
dx

ln (x2 + 3) = 1
x2 + 3

# d
dx

(x2 + 3) = 1
x2 + 3

# 2x = 2x
x2 + 3

.

(c) Equation (2) with u = 0 x 0  gives an important derivative: 

d
dx

ln 0 x 0 = d
du

ln u # du
dx

u = 0 x 0 , x ≠ 0

= 1
u
# x0 x 0 d

dx
( 0 x 0 ) = x

0 x 0
= 10 x 0 # x0 x 0 Substitute for u.

= x
x2

= 1
x .

So 1>x is the derivative of ln x on the domain x 7 0, and the derivative of ln (-x) on 
the domain x 6 0.

Notice from Example 3a that the function y = ln 2x has the same derivative as the 
function y = ln x. This is true of y = ln bx for any constant b, provided that bx 7 0:

d
dx

ln bx = 1
bx
# d
dx

(bx) = 1
bx

(b) = 1
x . (3)

EXAMPLE 4  A line with slope m passes through the origin and is tangent to the graph 
of y = ln x. What is the value of m?

Solution Suppose the point of tangency occurs at the unknown point x = a 7 0. Then 
we know that the point (a, ln a) lies on the graph and that the tangent line at that point has 
slope m = 1>a (Figure 3.38). Since the tangent line passes through the origin, its slope is

m = ln a - 0
a - 0

= ln a
a .

Setting these two formulas for m equal to each other, we have

ln a
a = 1

a

ln a = 1

eln a = e1

a = e

m = 1
e .

The Derivatives of au and loga u

We start with the equation ax = eln (ax) = ex lna , a 7 0, which was seen in Section 1.6:

d
dx

ax = d
dx

ex lna

= ex ln a # d
dx

(x ln a) d
dx

eu = eu du
dx

= ax ln a.

Derivative of ln ∣ x ∣

d
dx

ln 0 x 0 = 1
x , x ≠ 0

d
dx

ln bx = 1
x , bx 7 0
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FIGURE 3.38 The tangent line intersects 
the curve at some point (a, ln a), where the 
slope of the curve is 1>a (Example 4).
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That is, if a 7 0, then ax is differentiable and

d
dx

ax = ax ln a. (4)

This equation shows why ex is the preferred exponential function in calculus. If a = e,
then ln a = 1 and the derivative of ax simplifies to

d
dx

ex = ex ln e = ex.

With the Chain Rule, we get a more general form for the derivative of a general expo-
nential function au.

EXAMPLE 5 Here are some derivatives of general exponential functions.

(a) d
dx

3x = 3x ln 3 Eq. (5) with a = 3, u = x

(b) d
dx

3-x = 3-x(ln 3)
d
dx

(-x) = -3-x ln 3 Eq. (5) with a = 3, u = -x

(c) d
dx

3sin x = 3sin x(ln 3)
d
dx

(sin x) = 3sin x(ln 3) cos x c, u = sin x

In Section 3.3 we looked at the derivative ƒ′(0) for the exponential functions ƒ(x) =
ax at various values of the base a. The number ƒ′(0) is the limit, limhS0 (ah - 1)>h, and 
gives the slope of the graph of ax when it crosses the y-axis at the point (0, 1). We now see 
from Equation (4) that the value of this slope is

lim
hS0

ah - 1
h

= ln a. (6)

In particular, when a = e we obtain

lim
hS0

eh - 1
h

= ln e = 1.

However, we have not fully justified that these limits actually exist. While all of the argu-
ments given in deriving the derivatives of the exponential and logarithmic functions are 
correct, they do assume the existence of these limits. In Chapter 7 we will give another 
development of the theory of logarithmic and exponential functions which fully justifies 
that both limits do in fact exist and have the values derived above.

To find the derivative of loga u for an arbitrary base (a 7 0, a ≠ 1), we start with the 
change-of-base formula for logarithms (reviewed in Section 1.6) and express loga u in 
terms of natural logarithms,

loga x = ln x
ln a

.

If a 7 0 and u is a differentiable function of x, then au is a differentiable func-
tion of x and

d
dx

au = au ln a
du
dx

. (5)
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Taking derivatives, we have

d
dx

loga x = d
dx
a ln x

ln a
b

= 1
ln a

# d
dx

ln x ln a is a constant.

= 1
ln a

# 1
x

= 1
x ln a

.

If u is a differentiable function of x and u 7 0, the Chain Rule gives a more general 
formula.

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, 
and powers can often be found more quickly if we take the natural logarithm of both sides 
before differentiating. This enables us to use the laws of logarithms to simplify the formu-
las before differentiating. The process, called logarithmic differentiation, is illustrated in 
the next example.

EXAMPLE 6 Find dy>dx if

y =
(x2 + 1)(x + 3)1>2

x - 1
, x 7 1.

Solution We take the natural logarithm of both sides and simplify the result with the 
algebraic properties of logarithms from Theorem 1 in Section 1.6:

ln y = ln
(x2 + 1)(x + 3)1>2

x - 1

= ln ((x2 + 1)(x + 3)1>2) - ln (x - 1) Rule 2

= ln (x2 + 1) + ln (x + 3)1>2 - ln (x - 1) Rule 1

= ln (x2 + 1) + 1
2

ln (x + 3) - ln (x - 1). Rule 4

We then take derivatives of both sides with respect to x, using Equation (2) on the left:

1
y

dy
dx

= 1
x2 + 1

# 2x + 1
2
# 1

x + 3 - 1
x - 1

.

Next we solve for dy>dx:

dy
dx

= ya 2x
x2 + 1

+ 1
2x + 6

- 1
x - 1

b .

For a 7 0 and a ≠ 1,

d
dx

loga u = 1
u ln a

du
dx

. (7)
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Finally, we substitute for y:

dy
dx

=
(x2 + 1)(x + 3)1>2

x - 1
a 2x

x2 + 1
+ 1

2x + 6
- 1

x - 1
b .

Irrational Exponents and the Power Rule (General Version)

The definition of the general exponential function enables us to raise any positive number 
to any real power n, rational or irrational. That is, we can define the power function y = xn

for any exponent n.

Because the logarithm and exponential functions are inverses of each other, the defini-
tion gives

ln xn = n ln x, for all real numbers n.

That is, the rule for taking the natural logarithm of any power holds for all real exponents 
n, not just for rational exponents.

The definition of the power function also enables us to establish the derivative Power 
Rule for any real power n, as stated in Section 3.3.

DEFINITION For any x 7 0 and for any real number n,

xn = en ln x.

Proof Differentiating xn with respect to x gives

d
dx

xn = d
dx

en ln x Definition of xn, x 7 0

= en ln x # d
dx

(n ln x) Chain Rule for eu

= xn # n
x Definition and derivative of ln x

= nxn-1. xn # x-1 = xn-1

In short, whenever x 7 0,

d
dx

xn = nxn-1.

For x 6 0, if y = xn, y′, and xn-1 all exist, then

ln 0 y 0 = ln 0 x 0 n = n ln 0 x 0 .

General Power Rule for Derivatives

For x 7 0 and any real number n,

d
dx

xn = nxn-1.

If x … 0, then the formula holds whenever the derivative, xn, and xn-1 all exist.
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Using implicit differentiation (which assumes the existence of the derivative y′) and 
Example 3(c), we have

y′
y = n

x .

Solving for the derivative,

y′ = n
y
x = n

xn

x = nxn-1. y = xn

It can be shown directly from the definition of the derivative that the derivative equals 
0 when x = 0 and n Ú 1 (see Exercise 99). This completes the proof of the general ver-
sion of the Power Rule for all values of x.

EXAMPLE 7 Differentiate ƒ(x) = xx, x 7 0.

Solution We note that ƒ(x) = xx = ex ln x, so differentiation gives

ƒ′(x) = d
dx

(ex ln x)

= ex ln x d
dx

(x ln x) d
dx eu, u = x ln x

= ex ln xaln x + x # 1xb
= xx (ln x + 1). x 7 0

We can also find the derivative of y = xx using logarithmic differentiation, assuming y′
exists.

The Number e Expressed as a Limit

In Section 1.5 we defined the number e as the base value for which the exponential func-
tion y = ax has slope 1 when it crosses the y-axis at (0, 1). Thus e is the constant that sat-
isfies the equation

lim
hS0

eh - 1
h

= ln e = 1. Slope equals ln e from Eq. (6).

We now prove that e can be calculated as a certain limit.

THEOREM 4—The Number e as a Limit The number e can be calculated as the 
limit

e = lim
xS0

(1 + x)1>x.

Proof If ƒ(x) = ln x, then ƒ′(x) = 1>x, so ƒ′(1) = 1. But, by the definition of derivative,

ƒ′(1) = lim
hS0

ƒ(1 + h) - ƒ(1)
h

= lim
xS0

ƒ(1 + x) - ƒ(1)
x

= lim
xS0

ln (1 + x) - ln 1
x = lim

xS0

1
x ln (1 + x) ln 1 = 0

= lim
xS0

ln (1 + x)1>x = ln c lim
xS0

(1 + x)1>x d . ln is continuous, 
Theorem 10 in 
Chapter 2.

1

0
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y

y = (1 + x)1�x

e

FIGURE 3.39 The number e is the limit 
of the function graphed here as x S 0.
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Because ƒ′(1) = 1, we have

ln c lim
xS0

(1 + x)1>x d = 1.

Therefore, exponentiating both sides we get

lim
xS0

(1 + x)1>x = e.

See Figure 3.39 on the previous page.

Approximating the limit in Theorem 4 by taking x very small gives approximations to e.
Its value is e ≈ 2.718281828459045 to 15 decimal places.

Derivatives of Inverse Functions
In Exercises 1–4:

a. Find ƒ -1(x).

b. Graph ƒ and ƒ -1 together.

c.  Evaluate dƒ>dx at x = a and dƒ -1>dx at x = ƒ(a) to show that 
at these points dƒ -1>dx = 1>(dƒ>dx).

1. ƒ(x) = 2x + 3, a = -1 2. ƒ(x) = (1>5)x + 7, a = -1

3. ƒ(x) = 5 - 4x, a = 1>2 4. ƒ(x) = 2x2, x Ú 0, a = 5

5. a. Show that ƒ(x) = x3 and g(x) = 13 x are inverses of one another.

b. Graph ƒ and g over an x-interval large enough to show the 
graphs intersecting at (1, 1) and (-1, -1). Be sure the picture 
shows the required symmetry about the line y = x.

c. Find the slopes of the tangents to the graphs of ƒ and g at 
(1, 1) and (-1, -1) (four tangents in all).

d. What lines are tangent to the curves at the origin?

6. a. Show that h(x) = x3>4 and k(x) = (4x)1>3 are inverses of one 
another.

b. Graph h and k over an x-interval large enough to show the 
graphs intersecting at (2, 2) and (-2, -2). Be sure the picture 
shows the required symmetry about the line y = x.

c. Find the slopes of the tangents to the graphs at h and k at 
(2, 2) and (-2, -2).

d. What lines are tangent to the curves at the origin?

7. Let ƒ(x) = x3 - 3x2 - 1, x Ú 2. Find the value of dƒ -1>dx at 
the point x = -1 = ƒ(3).

8. Let ƒ(x) = x2 - 4x - 5, x 7 2. Find the value of dƒ -1>dx at 
the point x = 0 = ƒ(5).

9. Suppose that the differentiable function y = ƒ(x) has an inverse 
and that the graph of ƒ passes through the point (2, 4) and has a 
slope of 1>3 there. Find the value of dƒ -1>dx at x = 4.

10. Suppose that the differentiable function y = g(x) has an inverse 
and that the graph of g passes through the origin with slope 2. 
Find the slope of the graph of g-1 at the origin.

Derivatives of Logarithms
In Exercises 11–40, find the derivative of y with respect to x, t, or u,
as appropriate.

11. y = ln 3x + x 12. y = 1
ln 3x

13. y = ln (t2) 14. y = ln (t3>2) + 2t

15. y = ln
3
x 16. y = ln (sin x)

17. y = ln (u + 1) - eu 18. y = (cos u) ln (2u + 2)

19. y = ln x3 20. y = (ln x)3

21. y = t (ln t)2 22. y = t ln 2t

23. y = x4

4
ln x - x4

16
24. y = (x2 ln x)4

25. y = ln t
t 26. y = t

2ln t

27. y = ln x
1 + ln x

28. y = x ln x
1 + ln x

29. y = ln (ln x) 30. y = ln (ln (ln x))

31. y = u(sin (ln u) + cos (ln u))

32. y = ln (sec u + tan u)

33. y = ln
1

x2x + 1
34. y = 1

2
ln

1 + x
1 - x

35. y = 1 + ln t
1 - ln t

36. y = 2ln 1t

37. y = ln (sec (ln u)) 38. y = ln a2sin u cos u
1 + 2 ln u

b

39. y = ln a(x2 + 1)5

21 - x
b 40. y = ln C

(x + 1)5

(x + 2)20

Logarithmic Differentiation
In Exercises 41–54, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

41. y = 2x(x + 1) 42. y = 2(x2 + 1)(x - 1)2

43. y = A
t

t + 1
44. y = A

1
t(t + 1)

45. y = (sin u)2u + 3 46. y = (tan u)22u + 1

47. y = t(t + 1)(t + 2) 48. y = 1
t(t + 1)(t + 2)

49. y = u + 5
u cos u

50. y = u sin u

2sec u

51. y = x2x2 + 1
(x + 1)2>3 52. y = C

(x + 1)10

(2x + 1)5

Exercises 3.8
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53. y = B
3 x(x - 2)

x2 + 1
54. y = B

3 x(x + 1)(x - 2)

(x2 + 1)(2x + 3)

Finding Derivatives
In Exercises 55–62, find the derivative of y with respect to x, t, or u,
as appropriate.

55. y = ln (cos2 u) 56. y = ln (3ue-u)

57. y = ln (3te-t) 58. y = ln (2e-t sin t)

59. y = ln a eu

1 + eu
b 60. y = ln a 2u

1 + 2u b
61. y = e(cos t + ln t) 62. y = esin t(ln t2 + 1)

In Exercises 63–66, find dy>dx.

63. ln y = ey sin x 64. ln xy = ex+y

65. xy = yx 66. tan y = ex + ln x

In Exercises 67–88, find the derivative of y with respect to the given 
independent variable.

67. y = 2x 68. y = 3-x

69. y = 52s 70. y = 2(s2)

71. y = xp 72. y = t1-e

73. y = log2 5u 74. y = log3(1 + u ln 3)

75. y = log4 x + log4 x2 76. y = log25 ex - log51x

77. y = log2 r # log4 r 78. y = log3 r # log9 r

79. y = log3 a ax + 1
x - 1

b ln 3b 80. y = log5B a
7x

3x + 2
b ln 5

81. y = u sin (log7u) 82. y = log7 asin ucos u
eu2u

b
83. y = log5 ex 84. y = log2 a x2e2

22x + 1
b

85. y = 3log2 t 86. y = 3 log8 (log2 t)

87. y = log2 (8tln 2) 88. y = t log31e(sin t)(ln 3)2
Logarithmic Differentiation with Exponentials
In Exercises 89–96, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

89. y = (x + 1)x 90. y = x(x+1)

91. y = (1t)t 92. y = t2t

93. y = (sin x)x 94. y = xsin x

95. y = xln x 96. y = (ln x)ln x

Theory and Applications
97. If we write g(x) for ƒ-1(x), Equation (1) can be written as

g′(ƒ(a)) = 1
ƒ′(a)

, or g′(ƒ(a)) # ƒ′(a) = 1.

  If we then write x for a, we get

g′(ƒ(x)) # ƒ′(x) = 1.

  The latter equation may remind you of the Chain Rule, and indeed 
there is a connection.

    Assume that ƒ and g are differentiable functions that are 
inverses of one another, so that (g ∘ ƒ)(x) = x. Differentiate both

  sides of this equation with respect to x, using the Chain Rule to 
express (g ∘ ƒ)′(x) as a product of derivatives of g and ƒ. 
What do you find? (This is not a proof of Theorem 3 because 
we assume here the theorem’s conclusion that g = ƒ -1 is 
differentiable.)

98. Show that limnSq a1 + x
nb

n

= ex for any x 7 0.

99. If ƒ(x) = xn, n Ú 1, show from the definition of the derivative 
that ƒ′(0) = 0.

100. Using mathematical induction, show that for n 7 1

dn

dxn ln x = (-1)n-1
(n - 1)!

xn .

COMPUTER EXPLORATIONS
In Exercises 101–108, you will explore some functions and their 
inverses together with their derivatives and tangent line approxima-
tions at specified points. Perform the following steps using your CAS:

a. Plot the function y = ƒ(x) together with its derivative over the 
given interval. Explain why you know that ƒ is one-to-one over 
the interval.

b. Solve the equation y = ƒ(x) for x as a function of y, and name the 
resulting inverse function g.

c.  Find the equation for the tangent line to ƒ at the specified point 
(x0, ƒ(x0)).

d. Find the equation for the tangent line to g at the point (ƒ(x0), x0)
located symmetrically across the 45° line y = x (which is the 
graph of the identity function). Use Theorem 3 to find the slope of 
this tangent line.

e.  Plot the functions ƒ and g, the identity, the two tangent lines, and 
the line segment joining the points (x0, ƒ(x0)) and (ƒ(x0), x0).
Discuss the symmetries you see across the main diagonal.

101. y = 23x - 2,
2
3

… x … 4, x0 = 3

102. y = 3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
103. y = 4x

x2 + 1
, -1 … x … 1, x0 = 1>2

104. y = x3

x2 + 1
, -1 … x … 1, x0 = 1>2

105. y = x3 - 3x2 - 1, 2 … x … 5, x0 = 27
10

106. y = 2 - x - x3, -2 … x … 2, x0 = 3
2

107. y = ex, -3 … x … 5, x0 = 1

108. y = sin x, - p
2

… x … p
2

, x0 = 1

In Exercises 109 and 110, repeat the steps above to solve for the func-
tions y = ƒ(x) and x = ƒ -1(y) defined implicitly by the given equa-
tions over the interval.

109. y1>3 - 1 = (x + 2)3, -5 … x … 5, x0 = -3>2
110. cos y = x1>5, 0 … x … 1, x0 = 1>2
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3.9 Inverse Trigonometric Functions

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused 
there on the arcsine and arccosine functions. Here we complete the study of how all six 
inverse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of tan x, cot x, sec x, and csc x

The graphs of these four basic inverse trigonometric functions are shown again in Figure 3.40. 
We obtain these graphs by reflecting the graphs of the restricted trigonometric functions 
(as discussed in Section 1.6) through the line y = x. Let’s take a closer look at the arctan-
gent, arccotangent, arcsecant, and arccosecant functions.

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle 
whose cotangent is x, and so forth. The angles belong to the restricted domains of the tan-
gent, cotangent, secant, and cosecant functions.

x

y

(a)

Domain: −∞ < x < ∞
Range: < y <p

2
−

p
2

1−1−2 2

p
2

p
2

−

y = tan–1x

x

y

(c)

Domain:
Range:

x ≤ −1 or x ≥ 1
0 ≤ y ≤ p, y ≠

1−1−2 2

y = sec–1x

p

p
2

p
2

x

y

Domain:
Range:

x ≤ −1 or x ≥ 1
≤ y ≤ , y ≠ 0p

2
−

p
2

(d)

1−1−2 2

p
2

p
2

−

y = csc–1x

x

y

0 < y < p

(b)

p

p
2

1−1−2 2

y = cot–1x

Domain: −∞ < x < ∞
Range:

FIGURE 3.40 Graphs of the arctangent, arccotangent, arcsecant, and arccosecant functions.

DEFINITIONS

y = tan−1 x is the number in (-p>2, p>2) for which tan y = x.

y = cot−1 x is the number in (0, p) for which coty = x.

y = sec−1 x is the number in 30, p/2) ∪ (p/2, p4 for which sec y = x.

y = csc−1 x is the number in 3-p/2, 0) ∪ (0, p/24 for which csc y = x.

We use open or half-open intervals to avoid values for which the tangent, cotangent, 
secant, and cosecant functions are undefined. (See Figure 3.40.)

The graph of y = tan-1 x is symmetric about the origin because it is a branch of the 
graph x = tan y that is symmetric about the origin (Figure 3.40a). Algebraically this 
means that

tan-1 (-x) = - tan-1 x;

the arctangent is an odd function. The graph of y = cot-1 x has no such symmetry 
(Figure 3.40b). Notice from Figure 3.40a that the graph of the arctangent function has two 
horizontal asymptotes: one at y = p>2 and the other at y = -p>2.
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The inverses of the restricted forms of sec x and csc x are chosen to be the functions 
graphed in Figures 3.40c and 3.40d.

Caution There is no general agreement about how to define sec-1 x for negative values of 
x. We chose angles in the second quadrant between p>2 and p. This choice makes 
sec-1 x = cos-1 (1>x). It also makes sec-1 x an increasing function on each interval of its 
domain. Some tables choose sec-1 x to lie in 3-p, -p>2) for x 6 0 and some texts 
choose it to lie in 3p, 3p>2) (Figure 3.41). These choices simplify the formula for the 
derivative (our formula needs absolute value signs) but fail to satisfy the computational 
equation sec-1 x = cos-1 (1>x). From this, we can derive the identity

sec-1 x = cos-1 a1xb = p
2
- sin-1 a1xb (1)

by applying Equation (5) in Section 1.6.

3p
2

y = sec–1x

−1 10

p
2

3p
2

p
2−

−

x

y

p

−p

Domain: 0 x 0 ≥ 1
Range: 0 ≤ y ≤ p, y ≠ p

2

B

A

C

FIGURE 3.41 There are several logical 
choices for the left-hand branch of 
y = sec-1 x. With choice A,
sec-1 x = cos-1 (1>x), a useful identity 
employed by many calculators.

y

1−1
x

y = sin–1x
Domain:
Range:

−p2

p
2 −1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 3.42 The graph of y = sin-1 x
has vertical tangents at x = -1 and 
x = 1.

The angles come from the first and fourth quadrants because the range of tan-1 x is 
(-p>2, p>2).

The Derivative of y = sin−1u

We know that the function x = sin y is differentiable in the interval -p>2 6 y 6 p>2
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore 
assures us that the inverse function y = sin-1 x is differentiable throughout the interval 
-1 6 x 6 1. We cannot expect it to be differentiable at x = 1 or x = -1 because the 
tangents to the graph are vertical at these points (see Figure 3.42).

EXAMPLE 1  The accompanying figures show two values of tan-1 x.

a b

x

y

0
x

y

0
1

2

3
"

3tan–1 1

"

3
p
6

tan–1 −
"

3 p
3

2
1

"

3

p
6

tan =p
6

1

"

3
tan = −

"

3p
3−

p
3−

= tan–1 = = −

−
"

3

a b

x tan-1 x

23 p>3
1 p>4

23>3 p>6
-23>3 -p>6

-1 -p>4
-23 -p>3
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We find the derivative of y = sin-1 x by applying Theorem 3 with ƒ(x) = sin x and 
ƒ -1(x) = sin-1 x:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x))

Theorem 3

= 1
cos (sin-1 x)

ƒ′(u) = cos u

= 1

21 - sin2 (sin-1 x)
cos u = 21 - sin2 u

= 1

21 - x2
. sin (sin-1 x) = x

If u is a differentiable function of x with 0 u 0 6 1, we apply the Chain Rule to get the 
general formula

EXAMPLE 2  Using the Chain Rule, we calculate the derivative

d
dx

(sin-1 x2) = 1

21 - (x2)2
# d

dx
(x2) = 2x

21 - x4
.

The Derivative of y = tan−1u

We find the derivative of y = tan-1 x by applying Theorem 3 with ƒ(x) = tan x and 
ƒ -1(x) = tan-1 x. Theorem 3 can be applied because the derivative of tan x is positive for 
-p>2 6 x 6 p>2:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

Theorem 3

= 1
sec2 (tan-1 x)

ƒ′(u) = sec2 u

= 1
1 + tan2 (tan-1 x)

sec2 u = 1 + tan2 u

= 1
1 + x2 . tan (tan-1 x) = x

The derivative is defined for all real numbers. If u is a differentiable function of x, we get 
the Chain Rule form:

d
dx

(sin-1 u) = 1

21 - u2

du
dx

, 0 u 0 6 1.

d
dx

(tan-1 u) = 1
1 + u2

du
dx

.

The Derivative of y = sec−1u

Since the derivative of sec x is positive for 0 6 x 6 p>2 and p>2 6 x 6 p, Theorem 3 
says that the inverse function y = sec-1 x is differentiable. Instead of applying the formula 
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in Theorem 3 directly, we find the derivative of y = sec-1 x, 0 x 0 7 1, using implicit dif-
ferentiation and the Chain Rule as follows:

y = sec-1 x

sec y = x Inverse function relationship

d
dx

(sec y) = d
dx

x Differentiate both sides.

sec y tan y
dy
dx

= 1 Chain Rule 

dy
dx

= 1
sec y tan y .

Since 0 x 0 7 1, y lies in 
(0, p>2) ∪ (p>2, p) and 
sec y tan y ≠ 0.

To express the result in terms of x, we use the relationships

sec y = x and tan y = {2sec2 y - 1 = {2x2 - 1

to get

dy
dx

= {
1

x2x2 - 1
.

Can we do anything about the {  sign? A glance at Figure 3.43 shows that the slope of the 
graph y = sec-1 x is always positive. Thus,

d
dx

sec-1 x = d + 1

x2x2 - 1
if x 7 1

- 1

x2x2 - 1
if x 6 -1.

With the absolute value symbol, we can write a single expression that eliminates the “{”
ambiguity:

d
dx

sec-1 x = 1
0 x 02x2 - 1

.

If u is a differentiable function of x with 0 u 0 7 1, we have the formula

x

y

0

p

1−1

y = sec–1x

p
2

FIGURE 3.43 The slope of the curve 
y = sec-1 x is positive for both x 6 -1
and x 7 1.

d
dx

(sec-1 u) = 1
0 u 02u2 - 1

du
dx

, 0 u 0 7 1.

EXAMPLE 3  Using the Chain Rule and derivative of the arcsecant function, we find

d
dx

sec-1 (5x4) = 1
0 5x4 02(5x4)2 - 1

d
dx

(5x4)

= 1

5x4225x8 - 1
(20x3) 5x4 7 1 7 0

= 4

x225x8 - 1
.
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Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way, 
thanks to the following identities.

We saw the first of these identities in Equation (5) of Section 1.6. The others are 
derived in a similar way. It follows easily that the derivatives of the inverse cofunctions are 
the negatives of the derivatives of the corresponding inverse functions. For example, the 
derivative of cos-1 x is calculated as follows:

d
dx

(cos-1 x) = d
dx
ap

2
- sin-1 xb Identity

= - d
dx

(sin-1 x)

= - 1

21 - x2
. Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

Inverse Function–Inverse Cofunction Identities

cos-1 x = p>2 - sin-1 x

cot-1 x = p>2 - tan-1 x

csc-1 x = p>2 - sec-1 x

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.
d(sin-1 u)

dx
= 1

21 - u2

du
dx

, 0 u 0 6 1

2.
d(cos-1 u)

dx
= - 1

21 - u2

du
dx

, 0 u 0 6 1

3.
d(tan-1 u)

dx
= 1

1 + u2
du
dx

4.
d(cot-1 u)

dx
= - 1

1 + u2
du
dx

5.
d(sec-1 u)

dx
= 1
0 u 02u2 - 1

du
dx

, 0 u 0 7 1

6.
d(csc-1 u)

dx
= - 1

0 u 02u2 - 1

du
dx

, 0 u 0 7 1
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Common Values
Use reference triangles in an appropriate quadrant, as in Example 1, to 
find the angles in Exercises 1–8.

1. a. tan-1 1 b. tan-11-232 c. tan-1 a 1

23
b

2. a. tan-1(-1) b. tan-123 c. tan-1 a -1

23
b

3. a. sin-1 a-1
2
b b. sin-1 a 1

22
b c. sin-1 a-23

2
b

4. a. sin-1 a1
2
b b. sin-1 a -1

22
b c. sin-1 a23

2
b

5. a. cos-1 a1
2
b b. cos-1 a -1

22
b c. cos-1 a23

2
b

6. a. csc-122 b. csc-1 a -2

23
b c. csc-1 2

7. a. sec-11-222 b. sec-1 a 2

23
b c. sec-1(-2)

8. a. cot-1 (-1) b. cot-11232 c. cot-1 a -1

23
b

Evaluations
Find the values in Exercises 9–12.

9. sin acos-1 a22
2
b b 10. sec acos-1 1

2
b

11. tan asin-1 a- 1
2
b b 12. cot asin-1 a- 23

2
b b

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s 
graph.)

13. lim
xS1-

sin-1 x 14. lim
xS-1+

cos-1 x

15. lim
xSq

tan-1 x 16. lim
xS-q

tan-1 x

17. lim
xSq

sec-1 x 18. lim
xS-q

sec-1 x

19. lim
xSq

csc-1 x 20. lim
xS-q

csc-1 x

Finding Derivatives
In Exercises 21–42, find the derivative of y with respect to the appro-
priate variable.

21. y = cos-1(x2) 22. y = cos-1(1>x)

23. y = sin-122 t 24. y = sin-1(1 - t)

25. y = sec-1(2s + 1) 26. y = sec-1 5s

27. y = csc-1 (x2 + 1), x 7 0

28. y = csc-1 x
2

29. y = sec-1 1
t , 0 6 t 6 1 30. y = sin-1 3

t2

31. y = cot-12t 32. y = cot-12t - 1

33. y = ln (tan-1 x) 34. y = tan-1(ln x)

35. y = csc-1 (et) 36. y = cos-1(e-t)

37. y = s21 - s2 + cos-1 s 38. y = 2s2 - 1 - sec-1 s

39. y = tan-12x2 - 1 + csc-1 x, x 7 1

40. y = cot-1 1
x - tan-1 x 41. y = x sin-1 x + 21 - x2

42. y = ln (x2 + 4) - x tan-1 ax
2
b

Theory and Examples
43. You are sitting in a classroom next to the wall looking at the 

blackboard at the front of the room. The blackboard is 12 ft long 
and starts 3 ft from the wall you are sitting next to. Show that 
your viewing angle is

a = cot-1 x
15

- cot-1 x
3

  if you are x ft from the front wall.

B
la

ck
bo

ar
d

12′

3′
Wall

You
a

x

44. Find the angle a.

65°

21

50
a

b

45. Here is an informal proof that tan-1 1 + tan-1 2 + tan-1 3 = p.
Explain what is going on.

Exercises 3.9
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46. Two derivations of the identity sec−1(−x) = P − sec−1 x

a. (Geometric) Here is a pictorial proof that sec-1(-x) =
p - sec-1 x. See if you can tell what is going on.

x

y

0

p

1 x−1−x

y = sec–1x

p
2

b. (Algebraic) Derive the identity sec-1(-x) = p - sec-1 x by 
combining the following two equations from the text:

cos-1(-x) = p - cos-1 x Eq. (4), Section 1.6

sec-1 x = cos-1(1>x) Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which 
are not? Give reasons for your answers.

47. a. tan-1 2 b. cos-1 2

48. a. csc-1 (1>2) b. csc-1 2

49. a. sec-1 0 b. sin-122

50. a. cot-1 (-1>2) b. cos-1(-5)

51. Use the identity

csc-1 u = p
2

- sec-1 u

  to derive the formula for the derivative of csc-1 u in Table 3.1 
from the formula for the derivative of sec-1 u.

52. Derive the formula

dy
dx

= 1
1 + x2

  for the derivative of y = tan-1 x by differentiating both sides of 
the equivalent equation tan y = x.

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

d
dx

sec-1 x = 1

0 x 02x2 - 1
, 0 x 0 7 1.

54. Use the identity

cot-1 u = p
2

- tan-1 u

  to derive the formula for the derivative of cot-1 u in Table 3.1 
from the formula for the derivative of tan-1 u.

55. What is special about the functions

ƒ(x) = sin-1 x - 1
x + 1

, x Ú 0, and g(x) = 2 tan-1 1x?

  Explain.

56. What is special about the functions

ƒ(x) = sin-1 1

2x2 + 1
and g(x) = tan-1 1

x?

  Explain.

57. Find the values of

a. sec-1 1.5 b. csc-1 (-1.5) c. cot-1 2

58. Find the values of

a. sec-1(-3) b. csc-1 1.7 c. cot-1 (-2)

In Exercises 59–61, find the domain and range of each composite 
function. Then graph the composites on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. y = tan-1(tan x) b. y = tan (tan-1 x)

60. a. y = sin-1(sin x) b. y = sin (sin-1 x)

61. a. y = cos-1(cos x) b. y = cos (cos-1 x)

Use your graphing utility for Exercises 62–66.

62. Graph y = sec (sec-1 x) = sec (cos-1(1>x)). Explain what you 
see.

63. Newton’s serpentine Graph Newton’s serpentine, y = 4x>(x2 + 1).
Then graph y = 2 sin (2 tan-1 x) in the same graphing window. 
What do you see? Explain.

64. Graph the rational function y = (2 - x2)>x2. Then graph y =
cos (2 sec-1 x) in the same graphing window. What do you see? 
Explain.

65. Graph ƒ(x) = sin-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

66. Graph ƒ(x) = tan-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

T

T

T

T

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes 
when it is known how the rate of some other related variable (or perhaps several variables) 
changes. The problem of finding a rate of change from other known rates of change is 
called a related rates problem.
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