
Section 3.2

Section Summary
— Big-O Notation

— Big-O Estimates for Important Functions

— Big-Omega and Big-Theta Notation

Edmund Landau
(1877-1938)

Paul Gustav Heinrich Bachmann
(1837-1920)

Donald E. Knuth
(Born 1938)

The Growth of Functions
— In both computer science and in mathematics, there are many

times when we care about how fast a function grows.

— In computer science, we want to understand how quickly an
algorithm can solve a problem as the size of the input grows.
— We can compare the efficiency of two different algorithms for

solving the same problem.

— We can also determine whether it is practical to use a particular
algorithm as the input grows.

— We’ll study these questions in Section 3.3.

— Two of the areas of mathematics where questions about the
growth of functions are studied are:
— number theory (covered in Chapter 4)

— combinatorics (covered in Chapters 6 and 8)

Big-O Notation
 Definition: Let f and g be functions from the set of

integers or the set of real numbers to the set of real
numbers. We say that f(x) is O(g(x)) if there are constants
C and k such that

 whenever x > k. (illustration on next slide)

— This is read as “f(x) is big-O of g(x)” or “g asymptotically
dominates f.”

— The constants C and k are called witnesses to the
relationship f(x) is O(g(x)). Only one pair of witnesses is
needed.

Illustration of Big-O Notation

f(x) is O(g(x)

Some Important Points about Big-
O Notation
— If one pair of witnesses is found, then there are infinitely

many pairs. We can always make the k or the C larger and
still maintain the inequality .
— Any pair C ̍ and k ̍ where C < C̍ and k < k ̍ is also a pair of

witnesses since whenever x > k ̍> k.

You may see “ f(x) = O(g(x))” instead of “ f(x) is O(g(x)).”
— But this is an abuse of the equals sign since the meaning is

that there is an inequality relating the values of f and g, for
sufficiently large values of x.

— It is ok to write f(x) ∊ O(g(x)), because O(g(x)) represents
the set of functions that are O(g(x)).

— Usually, we will drop the absolute value sign since we will
always deal with functions that take on positive values.

Using the Definition of Big-O Notation
 Example: Show that is .

 Solution: Since when x > 1, x < x2 and 1 < x2

— Can take C = 4 and k = 1 as witnesses to show that

 (see graph on next slide)

— Alternatively, when x > 2, we have 2x ≤ x2 and 1 < x2.
Hence,
when x > 2.
— Can take C = 3 and k = 2 as witnesses instead.

Illustration of Big-O Notation
 is

Big-O Notation
— Both and
 are such that and .
 We say that the two functions are of the same order. (More on this

later)

— If and h(x) is larger than g(x) for all positive real
numbers, then .

— Note that if for x > k and if
 for all x, then if x > k. Hence, .

— For many applications, the goal is to select the function g(x) in O(g(x))
as small as possible (up to multiplication by a constant, of course).

Using the Definition of Big-O Notation
 Example: Show that 7x2 is O(x3).

 Solution: When x > 7, 7x2 < x3. Take C =1 and k = 7
as witnesses to establish that 7x2 is O(x3).

 (Would C = 7 and k = 1 work?)

 Example: Show that n2 is not O(n).

 Solution: Suppose there are constants C and k for
which n2 ≤ Cn, whenever n > k. Then (by dividing
both sides of n2 ≤ Cn) by n, then n ≤ C must hold for
all n > k. A contradiction!

Big-O Estimates for Polynomials
Example: Let

where are real numbers with an ≠0.

 Then f(x) is O(xn).

Proof: |f(x)| = |anxn + an-1 x
n-1 + ··· + a1x

1 + a0|

 ≤ |an|xn + |an-1| x
n-1 + ··· + |a1|x

1 + |a0|

 = xn (|an| + |an-1| /x + ··· + |a1|/xn-1 + |a0|/ xn)

 ≤ xn (|an| + |an-1| + ··· + |a1|+ |a0|)

— Take C = |an| + |an-1| + ··· + |a0| and k = 1. Then f(x) is O(xn).

— The leading term anxn of a polynomial dominates its
growth.

Uses triangle inequality,
an exercise in Section 1.8.

 Assuming x > 1

Big-O Estimates for some
Important Functions
 Example: Use big-O notation to estimate the sum of

the first n positive integers.

 Solution:

 Example: Use big-O notation to estimate the factorial
function

 Solution:

Continued →

Big-O Estimates for some
Important Functions

Example: Use big-O notation to estimate log n!

Solution: Given that (previous slide)

then .

Hence, log(n!) is O(n∙log(n)) taking C = 1 and k = 1.

Display of Growth of Functions

Note the difference in behavior of functions as n gets larger

Useful Big-O Estimates Involving
Logarithms, Powers, and Exponents
— If d > c > 1, then

 nc is O(nd), but nd is not O(nc).

— If b > 1 and c and d are positive, then

 (logb n)c is O(nd), but nd is not O((logb n)c).

— If b > 1 and d is positive, then

 nd is O(bn), but bn is not O(nd).

— If c > b > 1, then

 bn is O(cn), but cn is not O(bn).

Combinations of Functions
— If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then
 (f1 + f2)(x) is O(max(|g1(x) |,|g2(x) |)).

— See next slide for proof

— If f1 (x) and f2 (x) are both O(g(x)) then
 (f1 + f2)(x) is O(g(x)).

— See text for argument

— If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then
 (f1 f2)(x) is O(g1(x)g2(x)).

— See text for argument

Combinations of Functions
— If f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then

(f1 + f2)(x) is O(max(|g1(x) |,|g2(x) |)).

— By the definition of big-O notation, there are constants C1,C2 ,k1,k2 such that
| f1 (x) ≤ C1|g1(x) | when x > k1 and f2 (x) ≤ C2|g2(x) | when x > k2 .

— |(f1 + f2)(x)| = |f1(x) + f2(x)|

≤ |f1 (x)| + |f2 (x)| by the triangle inequality |a + b| ≤ |a| + |b|

— |f1 (x)| + |f2 (x)| ≤ C1|g1(x) | + C2|g2(x) |

≤ C1|g(x) | + C2|g(x) | where g(x) = max(|g1(x)|,|g2(x)|)

= (C1 + C2) |g(x)|
= C|g(x)| where C = C1 + C2

— Therefore |(f1 + f2)(x)| ≤ C|g(x)| whenever x > k, where k = max(k1,k2).

Ordering Functions by Order of Growth
— Put the functions below in order so that each function is

big-O of the next function on the list.
— f1(n) = (1.5)n

— f2(n) = 8n3+17n2 +111
— f3(n) = (log n)2

— f4(n) = 2n

— f5(n) = log (log n)
— f6(n) = n2 (log n)3

— f7(n) = 2n (n2 +1)
— f8(n) = n3+ n(log n)2

— f9(n) = 10000
— f10(n) = n!

We solve this exercise by successively finding the function that
grows slowest among all those left on the list.

• f9(n) = 10000 (constant, does not increase with n)

•f5(n) = log (log n) (grows slowest of all the others)

•f3(n) = (log n)2 (grows next slowest)

•f6(n) = n2 (log n)3 (next largest, (log n)3 factor smaller than any power of n)

•f2(n) = 8n3+17n2 +111 (tied with the one below)

•f8(n) = n3+ n(log n)2 (tied with the one above)

•f1(n) = (1.5)n (next largest, an exponential function)

•f4(n) = 2n (grows faster than one above since 2 > 1.5)

•f7(n) = 2n (n2 +1) (grows faster than above because of the n2 +1 factor)

•f10(n) = n! (n! grows faster than cn for every c)

Big-Omega Notation
 Definition: Let f and g be functions from the set of

integers or the set of real numbers to the set of real
numbers. We say that

 if there are constants C and k such that

 when x > k.

— We say that “f(x) is big-Omega of g(x).”

— Big-O gives an upper bound on the growth of a function,
while Big-Omega gives a lower bound. Big-Omega tells us
that a function grows at least as fast as another.

— f(x) is Ω(g(x)) if and only if g(x) is O(f(x)). This follows
from the definitions. See the text for details.

Ω is the upper case
version of the lower
case Greek letter ω.

Big-Omega Notation
Example: Show that is

where .

Solution: for all
positive real numbers x.

— Is it also the case that is ?

Big-Theta Notation
— Definition: Let f and g be functions from the set of

integers or the set of real numbers to the set of real
numbers. The function if

 and .

— We say that “f is big-Theta of g(x)” and also that “f(x) is of
order g(x)” and also that “f(x) and g(x) are of the same
order.”

— if and only if there exists constants C1 ,
C2 and k such that C1g(x) < f(x) < C2 g(x) if x > k. This
follows from the definitions of big-O and big-Omega.

 Θ is the upper case
version of the lower
case Greek letter θ.

Big Theta Notation
 Example: Show that the sum of the first n positive integers

is Θ(n2).
 Solution: Let f(n) = 1 + 2 + �∙∙ + n.

— We have already shown that f(n) is O(n2).
— To show that f(n) is Ω(n2), we need a positive constant C

such that f(n) > Cn2 for sufficiently large n. Summing only
the terms greater than n/2 we obtain the inequality

 1 + 2 + �∙∙ + n ≥ ⌈ n/2⌉ + (⌈ n/2⌉ + 1) + ∙∙∙ + n
 ≥ ⌈ n/2⌉ + ⌈ n/2⌉ + ∙∙∙ + ⌈ n/2⌉
 = (n − ⌈ n/2⌉ + 1) ⌈ n/2⌉
 ≥ (n/2)(n/2) = n2/4
— Taking C = ¼, f(n) > Cn2 for all positive integers n. Hence,

f(n) is Ω(n2), and we can conclude that f(n) is Θ(n2).

Big-Theta Notation
 Example: Sh0w that f(x) = 3x2 + 8x log x is Θ(x2).

 Solution:

— 3x2 + 8x log x ≤ 11x2 for x > 1,
since 0 ≤ 8x log x ≤ 8x2 .

— Hence, 3x2 + 8x log x is O(x2).

— x2 is clearly O(3x2 + 8x log x)

— Hence, 3x2 + 8x log x is Θ(x2).

Big-Theta Notation
— When it must also be the case that

— Note that if and only if it is the case
that and .

— Sometimes writers are careless and write as if big-O
notation has the same meaning as big-Theta.

Big-Theta Estimates for
Polynomials
Theorem: Let

where are real numbers with an ≠0.

 Then f(x) is of order xn (or Θ(xn)).
(The proof is an exercise.)

Example:

The polynomial is order of x5 (or
Θ(x5)).

The polynomial
is order of x199 (or Θ(x199)).

Section 3.3

Section Summary
— Time Complexity

— Worst-Case Complexity

— Algorithmic Paradigms

— Understanding the Complexity of Algorithms

The Complexity of Algorithms
— Given an algorithm, how efficient is this algorithm for

solving a problem given input of a particular size? To
answer this question, we ask:
— How much time does this algorithm use to solve a problem?

— How much computer memory does this algorithm use to
solve a problem?

— When we analyze the time the algorithm uses to solve the
problem given input of a particular size, we are studying
the time complexity of the algorithm.

— When we analyze the computer memory the algorithm
uses to solve the problem given input of a particular size,
we are studying the space complexity of the algorithm.

The Complexity of Algorithms
— In this course, we focus on time complexity. The space

complexity of algorithms is studied in later courses.
— We will measure time complexity in terms of the number

of operations an algorithm uses and we will use big-O and
big-Theta notation to estimate the time complexity.

— We can use this analysis to see whether it is practical to
use this algorithm to solve problems with input of a
particular size. We can also compare the efficiency of
different algorithms for solving the same problem.

— We ignore implementation details (including the data
structures used and both the hardware and software
platforms) because it is extremely complicated to consider
them.

Time Complexity
— To analyze the time complexity of algorithms, we determine the

number of operations, such as comparisons and arithmetic
operations (addition, multiplication, etc.). We can estimate the
time a computer may actually use to solve a problem using the
amount of time required to do basic operations.

— We ignore minor details, such as the “house keeping” aspects of
the algorithm.

— We will focus on the worst-case time complexity of an
algorithm. This provides an upper bound on the number of
operations an algorithm uses to solve a problem with input of a
particular size.

— It is usually much more difficult to determine the average case
time complexity of an algorithm. This is the average number of
operations an algorithm uses to solve a problem over all inputs
of a particular size.

Complexity Analysis of Algorithms
 Example: Describe the time complexity of the algorithm

for finding the maximum element in a finite sequence.

procedure max(a1, a2, …., an: integers)
max := a1

for i := 2 to n
if max < ai then max := ai

return max{max is the largest element}

 Solution: Count the number of comparisons.
• The max < ai comparison is made n − 1 times.
• Each time i is incremented, a test is made to see if i ≤ n.
• One last comparison determines that i > n.
• Exactly 2(n − 1) + 1 = 2n − 1 comparisons are made.

 Hence, the time complexity of the algorithm is Θ(n).

Worst-Case Complexity of Linear
Search
 Example: Determine the time complexity of the

linear search algorithm.procedure linear search(x:integer,
 a1, a2, …,an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)
 i := i + 1
if i ≤ n then location := i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if

x is not found}

Solution: Count the number of comparisons.
• At each step two comparisons are made; i ≤ n and x ≠ ai .
• To end the loop, one comparison i ≤ n is made.
• After the loop, one more i ≤ n comparison is made.

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1
comparisons are made and then an additional comparison is used to
exit the loop. So, in the worst case 2n + 2 comparisons are made.
Hence, the complexity is Θ(n).

Average-Case Complexity of Linear Search
 Example: Describe the average case performance of the

linear search algorithm. (Although usually it is very
difficult to determine average-case complexity, it is easy
for linear search.)

 Solution: Assume the element is in the list and that the
possible positions are equally likely. By the argument on
the previous slide, if x = ai , the number of comparisons is
2i + 1.

 Hence, the average-case complexity of linear search is Θ(n).

Worst-Case Complexity of Binary Search
 Example: Describe the time complexity of binary

search in terms of the number of comparisons used.
 procedure binary search(x: integer, a1,a2,…, an: increasing integers)
 i := 1 {i is the left endpoint of interval}
 j := n {j is right endpoint of interval}
 while i < j
 m := ⌊(i + j)/2⌋
 if x > am then i := m + 1
 else j := m
 if x = ai then location := i
 else location := 0
 return location{location is the subscript i of the term ai equal to x, or 0 if x is not found}

Solution: Assume (for simplicity) n = 2k elements. Note that k = log n.
• Two comparisons are made at each stage; i < j, and x > am .
• At the first iteration the size of the list is 2k and after the first iteration it is 2k-1. Then 2k-2
and so on until the size of the list is 21 = 2.
• At the last step, a comparison tells us that the size of the list is the size is 20 = 1 and the
element is compared with the single remaining element.
• Hence, at most 2k + 2 = 2 log n + 2 comparisons are made.
• Therefore, the time complexity is Θ (log n), better than linear search.

Worst-Case Complexity of Bubble Sort
 Example: What is the worst-case complexity of

bubble sort in terms of the number of comparisons
made? procedure bubblesort(a1,…,an: real numbers

 with n ≥ 2)
 for i := 1 to n− 1
 for j := 1 to n − i
 if aj >aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}

Solution: A sequence of n−1 passes is made through the list. On each pass n −
i comparisons are made.

The worst-case complexity of bubble sort is Θ(n2) since .

Worst-Case Complexity of Insertion
Sort
 Example: What is the worst-case complexity of

insertion sort in terms of the number of comparisons
made? procedure insertion sort(a1,…,an:

 real numbers with n ≥ 2)
 for j := 2 to n
 i := 1
 while aj > ai

 i := i + 1
 m := aj

 for k := 0 to j − i − 1
 aj-k := aj-k-1

 ai := m

Solution: The total number of
comparisons are:

Therefore the complexity is Θ(n2).

