The Growth of Functions

Section 3.2

Section Summary

— Big-O Notation

Donald E. Knuth (Born 1938)

- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation

Edmund Landau (1877-1938)

Paul Gustav Heinrich Bachmann (1837-1920)

The Growth of Functions

- In both computer science and in mathematics, there are many times when we care about how fast a function grows.
- In computer science, we want to understand how quickly an algorithm can solve a problem as the size of the input grows.
	- We can compare the efficiency of two different algorithms for solving the same problem.
	- We can also determine whether it is practical to use a particular algorithm as the input grows.
	- We'll study these questions in Section 3.3.
- Two of the areas of mathematics where questions about the growth of functions are studied are:
	- number theory (covered in Chapter 4)
	- combinatorics (covered in Chapters 6 and 8)

Big-*O* Notation

 Definition: Let *f* and *g* be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $O(q(x))$ if there are constants *C* and *k* such that

 $|f(x)| \leq C|g(x)|$

whenever $x > k$. (illustration on next slide)

- This is read as " $f(x)$ is big-O of $g(x)$ " or "g asymptotically dominates *f*."
- The constants C and k are called *witnesses* to the relationship $f(x)$ is $O(g(x))$. Only one pair of witnesses is needed.

Illustration of Big-*O* Notation

 $f(x)$ is $O(g(x))$

The part of the graph of $f(x)$ that satisfies $f(x) < Cg(x)$ is shown in color.

Some Important Points about Big-*O* Notation

- If one pair of witnesses is found, then there are infinitely many pairs. We can always make the *k* or the *C* larger and still maintain the inequality $|f(x)| \le C|g(x)|$.
	- Any pair *C*' and *k*^{\cdot} where *C* < *C*' and *k* < *k*^{\cdot} is also a pair of witnesses since $|f(x)| \le C|g(x)| \le C'|g(x)|$ whenever *x* > *k*^{\cdot} > *k*.

You may see " $f(x) = O(g(x))$ " instead of " $f(x)$ is $O(g(x))$."

- But this is an abuse of the equals sign since the meaning is that there is an inequality relating the values of *f* and *g*, for sufficiently large values of x.
- It is ok to write *f*(*x*) ∈ *O*(*g*(*x*)), because *O*(*g*(*x*)) represents the set of functions that are *O*(*g*(*x*)).
- Usually, we will drop the absolute value sign since we will always deal with functions that take on positive values.

Using the Definition of Big-*O* Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$. **Solution:** Since when $x > 1$, $x < x^2$ and $1 < x^2$

$$
0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2
$$

- Can take $C = 4$ and $k = 1$ as witnesses to show that $f(x)$ is $O(x^2)$ (see graph on next slide) • Alternatively, when $x > 2$, we have $2x \le x^2$ and $1 < x^2$. Hence, $0 \lt x^2 + 2x + 1 \lt x^2 + x^2 + x^2 = 3x^2$ when $x > 2$.
	- Can take *C =* 3 and *k =* 2 as witnesses instead.

Illustration of Big-*O* Notation

$$
f(x) = x^2 + 2x + 1
$$
 is $O(x^2)$

Big-*O* Notation

- Both $f(x) = x^2 + 2x + 1$ and $g(x) = x^2$ are such that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$. We say that the two functions are of the *same order*. (More on this later)
- If $f(x)$ is $O(g(x))$ and $h(x)$ is larger than $g(x)$ for all positive real numbers, then $f(x)$ is $O(h(x))$.
- Note that if $|f(x)| \le C|g(x)|$ for $x > k$ and if $|h(x)| > |g(x)|$ for all *x*, then $|f(x)| \le C|h(x)|$ if $x > k$. Hence, $f(x)$ is $O(h(x))$.
- For many applications, the goal is to select the function $g(x)$ in $O(g(x))$ as small as possible (up to multiplication by a constant, of course).

Using the Definition of Big-*O* Notation

Example: Show that $7x^2$ is $O(x^3)$.

Solution: When $x > 7$, $7x^2 < x^3$. Take $C = 1$ and $k = 7$ as witnesses to establish that $7x^2$ is $O(x^3)$.

(Would $C = 7$ and $k = 1$ work?)

Example: Show that n^2 is not $O(n)$.

 Solution: Suppose there are constants *C* and *k* for which $n^2 \leq Cn$, whenever $n > k$. Then (by dividing both sides of $n^2 \leq Cn$) by *n*, then $n \leq C$ must hold for all $n > k$. A contradiction!

Big-*O* Estimates for Polynomials

Example: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$.

Then
$$
f(x)
$$
 is $O(x^n)$.
\n**Proof:** $|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0|$
\nAssuming $x > 1$ $\leq |a_n |x^n + |a_{n-1}| x^{n-1} + \dots + |a_1 |x^1 + |a_0|$
\n $= x^n (|a_n| + |a_{n-1}| / x + \dots + |a_1| / x^{n-1} + |a_0| / x^n)$

$$
\leq x^n (|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|)
$$

• Take $C = |a_n| + |a_{n-1}| + \cdots + |a_0|$ and $k = 1$. Then $f(x)$ is $O(x^n)$.

 \bullet The leading term $a_n x^n$ of a polynomial dominates its growth.

Big-*O* Estimates for some Important Functions

 Example: Use big-*O* notation to estimate the sum of the first *n* positive integers.

Solution: $1 + 2 + \cdots + n \le n + n + \cdots n = n^2$

 $1 + 2 + ... + n$ is $O(n^2)$ taking $C = 1$ and $k = 1$. **Example**: Use big-*O* notation to estimate the factorial function $f(n) = n! = 1 \times 2 \times \cdots \times n$. **Solution**:

Continued →

$$
n! = 1 \times 2 \times \cdots \times n \le n \times n \times \cdots \times n = n^n
$$

$$
n! \text{ is } O(n^n) \text{ taking } C = 1 \text{ and } k = 1.
$$

Big-*O* Estimates for some Important Functions

Example: Use big-*O* notation to estimate log *n*! **Solution**: Given that $n! \leq n^n$ (previous slide) then $\log(n!) \leq n \cdot \log(n)$. Hence, $log(n!)$ is $O(n \cdot log(n))$ taking $C = 1$ and $k = 1$.

Display of Growth of Functions

Note the difference in behavior of functions as *n* **gets larger**

Useful Big-*O* Estimates Involving Logarithms, Powers, and Exponents

• If $d > c > 1$, then

 n^c is $O(n^d)$, but n^d is not $O(n^c)$.

- If b > 1 and *c* and *d* are positive, then $(\log_b n)^c$ is $O(n^d)$, but n^d is not $O((\log_b n)^c)$.
- If $b > 1$ and *d* is positive, then n^d is $O(b^n)$, but b^n is not $O(n^d)$.
- If $c > b > 1$, then

 b^n is $O(c^n)$, but *c*ⁿ is not $O(b^n)$.

Combinations of Functions

• If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(max(|g_1(x)|, |g_2(x)|)).$

• See next slide for proof

- If $f_1(x)$ and $f_2(x)$ are both $O(g(x))$ then $(f_1 + f_2)(x)$ is $O(g(x))$.
	- See text for argument
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 f_2)(x)$ is $O(g_1(x)g_2(x))$.
	- See text for argument

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(max(|g_1(x)|, |g_2(x)|)).$
	- **•** By the definition of big-*O* notation, there are constants C_1, C_2, k_1, k_2 such that $| f_1(x) \le C_1 | g_1(x) |$ when $x > k_1$ and $f_2(x) \le C_2 | g_2(x) |$ when $x > k_2$.
	- $|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$ $\leq |f_1(x)| + |f_2(x)|$ by the triangle inequality $|a + b| \leq |a| + |b|$ • $|f_1(x)| + |f_2(x)| \leq C_1|g_1(x)| + C_2|g_2(x)|$ $\leq C_1|g(x)| + C_2|g(x)|$ where $g(x) = max(|g_1(x)|, |g_2(x)|)$ $= (C_1 + C_2) |g(x)|$ $= C|q(x)|$ where $C = C_1 + C_2$
	- Therefore $|(f_1 + f_2)(x)| \leq C|g(x)|$ whenever *x* > *k*, where *k* = max(*k*₁,*k*₂).

Ordering Functions by Order of Growth

- Put the functions below in order so that each function is big-O of the next function on the list.
- \bullet $f_1(n) = (1.5)^n$ • $f_1(n) = 8n^3 + 17n^2 + 111$ • $f_3(n) = (\log n)^2$ • $f_{4}(n) = 2^{n}$ \bullet $f_5(n) = \log (\log n)$ • $f_6(n) = n^2(\log n)^3$ • $f_7(n) = 2^n (n^2 + 1)$ • $f_8(n) = n^3 + n(\log n)^2$ • $f_0(n) = 10000$ • $f_{10}(n) = n!$

We solve this exercise by successively finding the function that grows slowest among all those left on the list.

 $\cdot f_0(n) = 10000$ (constant, does not increase with *n*)

 $\mathbf{\cdot} f_{5}(n) = \log (\log n)$ (grows slowest of all the others)

 $\mathbf{e} f_2(n) = (\log n)^2$ (grows next slowest)

 $\mathbf{e}^f_6(n) = n^2(\log n)^3$ (next largest, (log *n*)³ factor smaller than any power of *n*)

 $\bullet f_2(n) = 8n^3 + 17n^2 + 111$ (tied with the one below)

 $\mathbf{r}_{\mathbf{s}}(n) = n^3 + n(\log n)^2$ (tied with the one above)

• $f(n) = (1.5)^n$ (next largest, an exponential function)

 $\mathbf{f}_4(n) = 2^n$ (grows faster than one above since $2 > 1.5$)

 \bullet *f₇*(*n*) = 2^{*n*} (*n*² +1) (grows faster than above because of the *n*² +1 factor)

• $f_{10}(n) = n!$ (n! grows faster than c^n for every c)

Big-Omega Notation

 Definition: Let *f* and *g* be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $\Omega(g(x))$

 if there are constants *C* and *k* such that $|f(x)| \ge C|g(x)|$ when $x > k$.

 Ω is the upper case version of the lower case Greek letter ω.

- \bullet We say that " $f(x)$ is big-Omega of $g(x)$."
- Big-*O* gives an upper bound on the growth of a function, while Big-Omega gives a lower bound. Big-Omega tells us that a function grows at least as fast as another.
- $f(x)$ is $\Omega(g(x))$ if and only if $g(x)$ is $O(f(x))$. This follows from the definitions. See the text for details.

Big-Omega Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$.

Solution: $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$ for all positive real numbers *x*.

• Is it also the case that $g(x) = x^3$ is $O(8x^3 + 5x^2 + 7)$?

Big-Theta Notation

Θ is the upper case version of the lower case Greek letter θ.

- **Definition**: Let *f* and *g* be functions from the set of integers or the set of real numbers to the set of real numbers. The function $f(x)$ is $\Theta(g(x))$ if $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.
- We say that "f is big-Theta of $g(x)$ " and also that " $f(x)$ is of *order* $g(x)$ " and also that " $f(x)$ and $g(x)$ are of the *same order*."
- $f(x)$ is $\Theta(g(x))$ if and only if there exists constants C_1 , *C*₂ and *k* such that $C_1 g(x) < f(x) < C_2 g(x)$ if $x > k$. This follows from the definitions of big-*O* and big-Omega.

Big Theta Notation

 Example: Show that the sum of the first *n* positive integers is $\Theta(n^2)$.

Solution: Let $f(n) = 1 + 2 + \cdots + n$.

- We have already shown that $f(n)$ is $O(n^2)$.
- To show that $f(n)$ is $\Omega(n^2)$, we need a positive constant C such that $f(n) > Cn^2$ for sufficiently large *n*. Summing only the terms greater than *n*/2 we obtain the inequality

$$
1 + 2 + \dots + n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \dots + n
$$

\n
$$
\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \dots + \lceil n/2 \rceil
$$

\n
$$
= (n - \lceil n/2 \rceil + 1) \lceil n/2 \rceil
$$

\n
$$
\ge (n/2)(n/2) = n^2/4
$$

Taking $C = \frac{1}{4}$, $f(n) > Cn^2$ for all positive integers *n*. Hence, *f*(*n*) is $\Omega(n^2)$, and we can conclude that *f*(*n*) is $\Theta(n^2)$.

Big-Theta Notation

Example: Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$. **Solution**:

- $3x^2 + 8x \log x \le 11x^2$ for $x > 1$, since $0 \le 8x \log x \le 8x^2$.
	- Hence, $3x^2 + 8x \log x$ is $O(x^2)$.
- x^2 is clearly $O(3x^2 + 8x \log x)$
- Hence, $3x^2 + 8x \log x$ is $\Theta(x^2)$.

Big-Theta Notation

- When $f(x)$ is $\Theta(g(x))$ it must also be the case that $q(x)$ is $\Theta(f(x))$.
- Note that $f(x)$ is $\Theta(g(x))$ if and only if it is the case that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(f(x))$.
- Sometimes writers are careless and write as if big-*O* notation has the same meaning as big-Theta.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then $f(x)$ is of order x^n (or $\Theta(x^n)$). (The proof is an exercise.)

Example:

- The polynomial $f(x) = 8x^5 + 5x^2 + 10$ is order of x^5 (or $\Theta(x^5)$).
- The polynomial $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is order of x^{199} (or $\Theta(x^{199})$).

Complexity of Algorithms Section 3.3

Section Summary

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:
	- How much time does this algorithm use to solve a problem?
	- How much computer memory does this algorithm use to solve a problem?
- When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the *time complexity* of the algorithm.
- When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the *space complexity* of the algorithm.

The Complexity of Algorithms

- In this course, we focus on time complexity. The space complexity of algorithms is studied in later courses.
- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big-*O* and big-Theta notation to estimate the time complexity.
- We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size. We can also compare the efficiency of different algorithms for solving the same problem.
- We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

Time Complexity

- To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We ignore minor details, such as the "house keeping" aspects of the algorithm.
- We will focus on the *worst-case time* complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the *average case time complexity* of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

procedure $max(a_1, a_2, ..., a_n)$: integers) $max := a$ **for** $i := 2$ to n if $max < a_i$; then $max := a_i$ return *max*{*max* is the largest element}

Solution: Count the number of comparisons.

- The $max < a_i$ comparison is made $n 1$ times.
- Each time *i* is incremented, a test is made to see if $i \leq n$.
- •One last comparison determines that *i > n*.
- Exactly $2(n-1) + 1 = 2n 1$ comparisons are made.

Hence, the time complexity of the algorithm is Θ(*n*).

Worst-Case Complexity of Linear Search

Example: Determine the time complexity of the

linear search algorither *linear search*(*x*:integer,

 $a_1, a_2, ..., a_n$: distinct integers) $i := 1$ **while** $(i \leq n \text{ and } x \neq a_i)$ $i := i + 1$ *i***f** $i \leq n$ **then** *location* := i **else** *location* := 0 **return** *location*{*location* is the subscript of the term that equals *x*, or is 0 if *x* is not found}

Solution: Count the number of comparisons.

- At each step two comparisons are made; $i \leq n$ and $x \neq a_i$.
- To end the loop, one comparison $i \leq n$ is made.

• After the loop, one more $i \leq n$ comparison is made. If $x = a_i$, $2i + 1$ comparisons are used. If x is not on the list, $2n + 1$ comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case $2n + 2$ comparisons are made. Hence, the complexity is Θ(*n*).

Average-Case Complexity of Linear Search

 Example: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)

 Solution: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if $x = a_i$, the number of comparisons is $2i + 1$.

 $\frac{3+5+7+\ldots+(2n+1)}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2[\frac{n(n+1)}{2}]}{n} + 1 = n+2$

Hence, the average-case complexity of linear search is $\Theta(n)$.

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary search in terms of the number of comparisons used.

> **procedure** binary search(*x*: integer, $a_1, a_2, ..., a_n$: increasing integers) $i := 1$ {*i* is the left endpoint of interval} $j := n$ {*j* is right endpoint of interval} **while** $i < j$ $m := |(i + j)/2|$ **if** $x > a_m$ then $i := m + 1$ **else** *j* := m *if* $x = a_i$ **then** *location* := *i* **else** *location* := 0 **return** *location*{location is the subscript *i* of the term a_i equal to *x*, or 0 if *x* is not found}

Solution: Assume (for simplicity) $n = 2^k$ elements. Note that $k = \log n$.

- Two comparisons are made at each stage; $i < j$, and $x > a_m$.
- At the first iteration the size of the list is 2^k and after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$.
- At the last step, a comparison tells us that the size of the list is the size is $2^0 = 1$ and the element is compared with the single remaining element.
- Hence, at most $2k + 2 = 2 \log n + 2$ comparisons are made.
- Therefore, the time complexity is Θ (log *n*), better than linear search.

Worst-Case Complexity of Bubble Sort

 Example: What is the worst-case complexity of bubble sort in terms of the number of comparisons

made? procedure *bubblesort*(a_1 ,..., a_n : real numbers with $n \geq 2$) **for** $i := 1$ to $n-1$ **for** $j := 1$ to $n - i$ **if** $a_j > a_{j+1}$ **then** interchange a_j and a_{j+1} $\{a_1, \ldots, a_n$ is now in increasing order}

Solution: A sequence of *n*−1 passes is made through the list. On each pass *n* − *i* comparisons are made.

 $(n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$

The worst-case complexity of bubble sort is $\Theta(n^2)$ since $\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$.

Worst-Case Complexity of Insertion Sort

 Example: What is the worst-case complexity of insertion sort in terms of the number of comparisons **made? procedure** *insertion sort*(a_1 ,..., a_n)

Solution: The total number of comparisons are:

 $2+3+\cdots+n = \frac{n(n-1)}{2}-1$

Therefore the complexity is Θ(*n*2).

```
real numbers with n \geq 2)
for j \coloneqq 2 to ni := 1while a_i > a_ii := i + 1m := a_jfor k := 0 to j - i - 1a_{j-k} := a_{j-k-1}a_i := m
```