The Growth of Functions

Section 3.2

Section Summary

Big-O Notation

Donald E. Knuth (Born 1938)

- Big-O Estimates for Important Functions
- Big-Omega and Big-Theta Notation

Edmund Landau (1877-1938)

Paul Gustav Heinrich Bachmann (1837-1920)

The Growth of Functions

- In both computer science and in mathematics, there are many times when we care about how fast a function grows.
- In computer science, we want to understand how quickly an algorithm can solve a problem as the size of the input grows.
 - We can compare the efficiency of two different algorithms for solving the same problem.
 - We can also determine whether it is practical to use a particular algorithm as the input grows.
 - We'll study these questions in Section 3.3.
- Two of the areas of mathematics where questions about the growth of functions are studied are:
 - number theory (covered in Chapter 4)
 - combinatorics (covered in Chapters 6 and 8)

Big-O Notation

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is O(g(x)) if there are constants C and k such that

 $|f(x)| \le C|g(x)|$

whenever x > k. (illustration on next slide)

- This is read as "f(x) is big-O of g(x)" or "g asymptotically dominates f."
- The constants C and k are called *witnesses* to the relationship *f*(*x*) is *O*(*g*(*x*)). Only one pair of witnesses is needed.

Illustration of Big-O Notation

f(x) is O(g(x))

The part of the graph of f(x) that satisfies f(x) < Cg(x) is shown in color.

Some Important Points about Big-O Notation

- If one pair of witnesses is found, then there are infinitely many pairs. We can always make the *k* or the *C* larger and still maintain the inequality $|f(x)| \le C|g(x)|$.
 - Any pair C' and k' where C < C' and k < k' is also a pair of witnesses since $|f(x)| \le C|g(x) \le C'|g(x)|$ whenever x > k' > k.

You may see "f(x) = O(g(x))" instead of "f(x) is O(g(x))."

- But this is an abuse of the equals sign since the meaning is that there is an inequality relating the values of *f* and *g*, for sufficiently large values of x.
- It is ok to write $f(x) \in O(g(x))$, because O(g(x)) represents the set of functions that are O(g(x)).
- Usually, we will drop the absolute value sign since we will always deal with functions that take on positive values.

Using the Definition of Big-O Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$. **Solution**: Since when x > 1, $x < x^2$ and $1 < x^2$

$$0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2$$

- Can take C = 4 and k = 1 as witnesses to show that f(x) is O(x²) (see graph on next slide)
 Alternatively, when x > 2, we have 2x ≤ x² and 1 < x². Hence, 0 ≤ x² + 2x + 1 ≤ x² + x² + x² = 3x² when x > 2.
 - Can take C = 3 and k = 2 as witnesses instead.

Illustration of Big-O Notation

$$f(x) = x^2 + 2x + 1$$
 is $O(x^2)$

Big-O Notation

- Both $f(x) = x^2 + 2x + 1$ and $g(x) = x^2$ are such that f(x) is O(g(x)) and g(x) is O(f(x)). We say that the two functions are of the *same order*. (More on this later)
- If f(x) is O(g(x)) and h(x) is larger than g(x) for all positive real numbers, then f(x) is O(h(x)).
- Note that if $|f(x)| \le C|g(x)|$ for x > k and if |h(x)| > |g(x)|for all x, then $|f(x)| \le C|h(x)|$ if x > k. Hence, f(x) is O(h(x)).
- For many applications, the goal is to select the function g(x) in O(g(x)) as small as possible (up to multiplication by a constant, of course).

Using the Definition of Big-O Notation

Example: Show that $7x^2$ is $O(x^3)$.

- **Solution**: When x > 7, $7x^2 < x^3$. Take C = 1 and k = 7 as witnesses to establish that $7x^2$ is $O(x^3)$.
- (Would C = 7 and k = 1 work?)

Example: Show that n^2 is not O(n).

Solution: Suppose there are constants *C* and *k* for which $n^2 \le Cn$, whenever n > k. Then (by dividing both sides of $n^2 \le Cn$) by *n*, then $n \le C$ must hold for all n > k. A contradiction!

Big-O Estimates for Polynomials

Example: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_o$ where a_0, a_1, \dots, a_n are real numbers with $a_n \neq 0$.

Then
$$f(x)$$
 is $O(x^{n})$.
Proof: $|f(x)| = |a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x^{1} + a_{0}|$
Assuming $x > 1$
 $\leq |a_{n}|x^{n} + |a_{n-1}|x^{n-1} + \dots + |a_{1}|x^{1} + |a_{0}|$
 $= x^{n} (|a_{n}| + |a_{n-1}|/x + \dots + |a_{1}|/x^{n-1} + |a_{0}|/x^{n})$
 $\leq x^{n} (|a_{n}| + |a_{n-1}| + \dots + |a_{1}| + |a_{0}|)$

• Take $C = |a_n| + |a_{n-1}| + \dots + |a_0|$ and k = 1. Then f(x) is $O(x^n)$.

• The leading term $a_n x^n$ of a polynomial dominates its growth.

Big-O Estimates for some Important Functions

Example: Use big-*O* notation to estimate the sum of the first *n* positive integers.

Solution: $1 + 2 + \cdots + n \leq n + n + \cdots = n^2$

 $1 + 2 + \ldots + n$ is $O(n^2)$ taking C = 1 and k = 1. **Example:** Use big-O notation to estimate the factorial function $f(n) = n! = 1 \times 2 \times \cdots \times n$. **Solution:**

 $n! = 1 \times 2 \times \dots \times n \leq n \times n \times \dots \times n = n^n$

n! is $O(n^n)$ taking C = 1 and k = 1.

Continued \rightarrow

Big-O Estimates for some Important Functions

Example: Use big-*O* notation to estimate $\log n!$ **Solution**: Given that $n! \le n^n$ (previous slide) then $\log(n!) \le n \cdot \log(n)$. Hence, $\log(n!)$ is $O(n \cdot \log(n))$ taking C = 1 and k = 1.

Display of Growth of Functions

Note the difference in behavior of functions as *n* gets larger

Useful Big-O Estimates Involving Logarithms, Powers, and Exponents

• If *d* > c > 1, then

 n^c is $O(n^d)$, but n^d is not $O(n^c)$.

- If b > 1 and c and d are positive, then
 (log_b n)^c is O(n^d), but n^d is not O((log_b n)^c).
- If b > 1 and d is positive, then
 n^d is O(bⁿ), but bⁿ is not O(n^d).
- If *c* > b > 1, then

 b^n is $O(c^n)$, but c^n is not $O(b^n)$.

Combinations of Functions

• If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.

See next slide for proof

- If $f_1(x)$ and $f_2(x)$ are both O(g(x)) then $(f_1 + f_2)(x)$ is O(g(x)).
 - See text for argument
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.
 - See text for argument

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.
 - By the definition of big-O notation, there are constants C_1, C_2, k_1, k_2 such that $|f_1(x) \le C_1|g_1(x)|$ when $x > k_1$ and $f_2(x) \le C_2|g_2(x)|$ when $x > k_2$.
 - $|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$ $\leq |f_1(x)| + |f_2(x)|$ by the triangle inequality $|a + b| \leq |a| + |b|$ • $|f_1(x)| + |f_2(x)| \leq C_1 |g_1(x)| + C_2 |g_2(x)|$
 - $\leq C_1 |g(x)| + C_2 |g(x)|$ where $g(x) = \max(|g_1(x)|, |g_2(x)|)$ = $(C_1 + C_2) |g(x)|$ = C|g(x)| where $C = C_1 + C_2$
 - Therefore $|(f_1 + f_2)(x)| \le C|g(x)|$ whenever x > k, where $k = \max(k_1, k_2)$.

Ordering Functions by Order of Growth

- Put the functions below in order so that each function is big-O of the next function on the list.
- $f_1(n) = (1.5)^n$ • $f_2(n) = 8n^3 + 17n^2 + 111$ • $f_3(n) = (\log n)^2$ • $f_4(n) = 2^n$ • $f_5(n) = \log (\log n)$ • $f_6(n) = n^2 (\log n)^3$ • $f_7(n) = 2^n (n^2 + 1)$ • $f_8(n) = n^3 + n(\log n)^2$ • $f_9(n) = 10000$ • $f_{10}(n) = n!$

We solve this exercise by successively finding the function that grows slowest among all those left on the list.

• $f_9(n) = 10000$ (constant, does not increase with *n*)

• $f_5(n) = \log(\log n)$ (grows slowest of all the others)

• $f_3(n) = (\log n)^2$ (grows next slowest)

• $f_6(n) = n^2 (\log n)^3$ (next largest, $(\log n)^3$ factor smaller than any power of n)

• $f_2(n) = 8n^3 + 17n^2 + 111$ (tied with the one below)

• $f_8(n) = n^3 + n(\log n)^2$ (tied with the one above)

• $f_i(n) = (1.5)^n$ (next largest, an exponential function)

• $f_4(n) = 2^n$ (grows faster than one above since 2 > 1.5)

• $f_7(n) = 2^n (n^2 + 1)$ (grows faster than above because of the $n^2 + 1$ factor)

•
$$f_{10}(n) = n!$$
 (*n*! grows faster than c^n for every *c*)

Big-Omega Notation

Definition: Let *f* and *g* be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$

if there are constants *C* and *k* such that $|f(x)| \ge C|g(x)|$ when x > k.

 Ω is the upper case version of the lower case Greek letter ω .

- We say that "f(x) is big-Omega of g(x)."
- Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound. Big-Omega tells us that a function grows at least as fast as another.
- f(x) is $\Omega(g(x))$ if and only if g(x) is O(f(x)). This follows from the definitions. See the text for details.

Big-Omega Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$.

Solution: $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$ for all positive real numbers *x*.

• Is it also the case that $g(x) = x^3$ is $O(8x^3 + 5x^2 + 7)$?

Big-Theta Notation

 Θ is the upper case version of the lower case Greek letter θ .

- Definition: Let *f* and *g* be functions from the set of integers or the set of real numbers to the set of real numbers. The function *f*(*x*) is Θ(*g*(*x*)) if *f*(*x*) is O(*g*(*x*)) and *f*(*x*) is Ω(*g*(*x*)).
- We say that "f is big-Theta of g(x)" and also that "f(x) is of order g(x)" and also that "f(x) and g(x) are of the same order."
- f(x) is $\Theta(g(x))$ if and only if there exists constants C_1 , C_2 and k such that $C_1g(x) < f(x) < C_2g(x)$ if x > k. This follows from the definitions of big-O and big-Omega.

Big Theta Notation

Example: Show that the sum of the first *n* positive integers is $\Theta(n^2)$.

Solution: Let $f(n) = 1 + 2 + \dots + n$.

- We have already shown that f(n) is $O(n^2)$.
- To show that f(n) is $\Omega(n^2)$, we need a positive constant C such that $f(n) > Cn^2$ for sufficiently large n. Summing only the terms greater than n/2 we obtain the inequality

$$1 + 2 + \dots + n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \dots + n$$

$$\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \dots + \lceil n/2 \rceil$$

$$= (n - \lceil n/2 \rceil + 1) \lceil n/2 \rceil$$

$$\ge (n/2)(n/2) = n^2/4$$

• Taking $C = \frac{1}{4}$, $f(n) > Cn^2$ for all positive integers *n*. Hence, f(n) is $\Omega(n^2)$, and we can conclude that f(n) is $\Theta(n^2)$.

Big-Theta Notation

Example: Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$. **Solution**:

- $3x^2 + 8x \log x \le 11x^2$ for x > 1, since $0 \le 8x \log x \le 8x^2$.
 - Hence, $3x^2 + 8x \log x$ is $O(x^2)$.
- x^2 is clearly $O(3x^2 + 8x \log x)$
- Hence, $3x^2 + 8x \log x$ is $\Theta(x^2)$.

Big-Theta Notation

- When f(x) is $\Theta(g(x))$ it must also be the case that g(x) is $\Theta(f(x))$.
- Note that f(x) is $\Theta(g(x))$ if and only if it is the case that f(x) is O(g(x)) and g(x) is O(f(x)).
- Sometimes writers are careless and write as if big-O notation has the same meaning as big-Theta.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_o$ where a_0, a_1, \dots, a_n are real numbers with $a_n \neq 0$. Then f(x) is of order x^n (or $\Theta(x^n)$). (The proof is an exercise.)

Example:

- The polynomial $f(x) = 8x^5 + 5x^2 + 10$ is order of x^5 (or $\Theta(x^5)$).
- The polynomial $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is order of x^{199} (or $\Theta(x^{199})$).

Complexity of Algorithms Section 3.3

Section Summary

- Time Complexity
- Worst-Case Complexity
- Algorithmic Paradigms
- Understanding the Complexity of Algorithms

The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size? To answer this question, we ask:
 - How much time does this algorithm use to solve a problem?
 - How much computer memory does this algorithm use to solve a problem?
- When we analyze the time the algorithm uses to solve the problem given input of a particular size, we are studying the *time complexity* of the algorithm.
- When we analyze the computer memory the algorithm uses to solve the problem given input of a particular size, we are studying the *space complexity* of the algorithm.

The Complexity of Algorithms

- In this course, we focus on time complexity. The space complexity of algorithms is studied in later courses.
- We will measure time complexity in terms of the number of operations an algorithm uses and we will use big-O and big-Theta notation to estimate the time complexity.
- We can use this analysis to see whether it is practical to use this algorithm to solve problems with input of a particular size. We can also compare the efficiency of different algorithms for solving the same problem.
- We ignore implementation details (including the data structures used and both the hardware and software platforms) because it is extremely complicated to consider them.

Time Complexity

- To analyze the time complexity of algorithms, we determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.). We can estimate the time a computer may actually use to solve a problem using the amount of time required to do basic operations.
- We ignore minor details, such as the "house keeping" aspects of the algorithm.
- We will focus on the *worst-case time* complexity of an algorithm. This provides an upper bound on the number of operations an algorithm uses to solve a problem with input of a particular size.
- It is usually much more difficult to determine the *average case time complexity* of an algorithm. This is the average number of operations an algorithm uses to solve a problem over all inputs of a particular size.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

procedure $max(a_1, a_2, ..., a_n: integers)$ $max := a_1$ **for** i := 2 to nif $max < a_i$ then $max := a_i$ return $max\{max \text{ is the largest element}\}$

Solution: Count the number of comparisons.

- The $max < a_i$ comparison is made n 1 times.
- Each time *i* is incremented, a test is made to see if $i \le n$.
- One last comparison determines that *i* > *n*.
- Exactly 2(n-1) + 1 = 2n 1 comparisons are made.

Hence, the time complexity of the algorithm is $\Theta(n)$.

Worst-Case Complexity of Linear Search

Example: Determine the time complexity of the

linear search algorithme.linear search(x:integer,

 $a_1, a_2, ..., a_n$: distinct integers) i := 1while $(i \le n \text{ and } x \ne a_i)$ i := i + 1if $i \le n$ then location := ielse location := 0return $location \{location \text{ is the subscript of the term that equals } x, \text{ or is } 0 \text{ if } x \text{ is not found} \}$

Solution: Count the number of comparisons.

- At each step two comparisons are made; $i \le n$ and $x \ne a_i$.
- To end the loop, one comparison $i \le n$ is made.

• After the loop, one more $i \le n$ comparison is made. If $x = a_i$, 2i + 1 comparisons are used. If x is not on the list, 2n + 1 comparisons are made and then an additional comparison is used to exit the loop. So, in the worst case 2n + 2 comparisons are made. Hence, the complexity is $\Theta(n)$.

Average-Case Complexity of Linear Search

Example: Describe the average case performance of the linear search algorithm. (Although usually it is very difficult to determine average-case complexity, it is easy for linear search.)

Solution: Assume the element is in the list and that the possible positions are equally likely. By the argument on the previous slide, if $x = a_i$, the number of comparisons is 2i + 1.

 $\frac{3+5+7+\ldots+(2n+1)}{n} = \frac{2(1+2+3+\ldots+n)+n}{n} = \frac{2[\frac{n(n+1)}{2}]}{n} + 1 = n+2$

Hence, the average-case complexity of linear search is $\Theta(n)$.

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary search in terms of the number of comparisons used.

procedure binary search(*x*: integer, $a_1, a_2, ..., a_n$: increasing integers) *i* := 1 {*i* is the left endpoint of interval} *j* := *n* {*j* is right endpoint of interval} **while** *i* < *j* $m := \lfloor (i + j)/2 \rfloor$ **if** $x > a_m$ then *i* := m + 1 **else** *j* := m **if** $x = a_i$ **then** *location* := *i* **else** *location* := 0 **return** *location* {location is the subscript *i* of the term a_i equal to *x*, or 0 if *x* is not found}

Solution: Assume (for simplicity) $n = 2^k$ elements. Note that $k = \log n$.

- Two comparisons are made at each stage; i < j, and $x > a_m$.
- At the first iteration the size of the list is 2^k and after the first iteration it is 2^{k-1} . Then 2^{k-2} and so on until the size of the list is $2^1 = 2$.
- At the last step, a comparison tells us that the size of the list is the size is $2^0 = 1$ and the element is compared with the single remaining element.
- Hence, at most $2k + 2 = 2 \log n + 2$ comparisons are made.
- Therefore, the time complexity is $\Theta(\log n)$, better than linear search.

Worst-Case Complexity of Bubble Sort

Example: What is the worst-case complexity of bubble sort in terms of the number of comparisons

made?

procedure *bubblesort*($a_1,...,a_n$: real numbers with $n \ge 2$) **for** i := 1 to n-1 **for** j := 1 to n-i **if** $a_j > a_{j+1}$ **then** interchange a_j and a_{j+1} { $a_1,...,a_n$ is now in increasing order}

Solution: A sequence of n-1 passes is made through the list. On each pass n - i comparisons are made.

 $(n-1) + (n-2) + \ldots + 2 + 1 = \frac{n(n-1)}{2}$

The worst-case complexity of bubble sort is $\Theta(n^2)$ since $\frac{n(n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$.

Worst-Case Complexity of Insertion Sort

Example: What is the worst-case complexity of insertion sort in terms of the number of comparisons made? **procedure** *insertion* $sort(a_1,...,a_n)$

Solution: The total number of comparisons are:

 $2+3+\cdots+n = \frac{n(n-1)}{2}-1$

Therefore the complexity is $\Theta(n^2)$.

```
procedure insertion sort(a_1,...,a_n:
real numbers with n \ge 2)
for j := 2 to n
i := 1
while a_j > a_i
i := i + 1
m := a_j
for k := 0 to j - i - 1
a_{j-k} := a_{j-k-1}
a_i := m
```