The Growth of Functions

Section 3.2

Section Summary
Donald E. Knuth

* Big-O Notation (Born 1938)

* Big-O Estimates for Important Functions
* Big-Omega and Big-Theta Notation

Edmund Landau Paul Gustav Heinrich Bachmann
(1877-1938) (1837-1920)

- = %

The Growth of Functions

In both computer science and in mathematics, there are many
times when we care about how fast a function grows.

In computer science, we want to understand how quickly an
algorithm can solve a problem as the size of the input grows.

e We can compare the efficiency of two different algorithms for
solving the same problem.

e We can also determine whether it is practical to use a particular
algorithm as the input grows.

e We'll study these questions in Section 3.3.

Two of the areas of mathematics where questions about the
growth of functions are studied are:

e number theory (covered in Chapter 4)

e combinatorics (covered in Chapters 6 and 8)

e : — ——

/ S —

1Ig2-0O Notation

Definition: Let fand g be functions from the set of
integers or the set of real numbers to the set of real
numbers. We say that f{x) is O(g(x)) if there are constants
C and k such that

f(2)| < Clg()]

whenever x > k. (illustration on next slide)

This is read as “f(x) is big-O of g(x)” or “g asymptotically
dominates f.”

The constants C and k are called witnesses to the

relationship f{x) is O(g(x)). Only one pair of witnesses is
needed.

lllustration of Big-O Notation

Cg(x) .
. fix) is O(g(x)

The part of the graph of f(x) that satisfies
f(x) < Cg(x) is shown in color.
g(x)

f(x) < Cg(x)forx>k

1
k

~“Some Important Points about Big-
O Notation

If one pair of witnesses is found, then there are infinitely
many pairs. We can always make the k or the C larger and
still maintain the inequality |f(z)| < C|g(2)|

e Any pair C' and k'where C < C'and k < k' is also a pair of
witnesses since |/(z)| < Clg(z) < C"lg(x)] whenever x > k'> k.

You may see “ f{x) = O(g(x))” instead of “ f{x) is O(g(x)).”

e But this is an abuse of the equals sign since the meaning is

that there is an inequality relating the values of fand g, for
sufficiently large values of x.

e [t is ok to write fix) € O(g(x)), because O(g(x)) represents
the set of functions that are O(g(x)).

Usually, we will drop the absolute value sign since we will
always deal with functions that take on positive values.

\

"

Using the Definition of Big-O Notation

Example: Show that f(z) = 2% + 2z + 1is O(z?).
Solution: Since when x> 1, x <x%?and 1 < x?

O g2 920 b < x2 22 |2 Aye

e Can take C =4 and k = 1 as witnesses to show that
f(z) is O(z?) (see graph on next slide)
Alternatively, when x > 2, we have 2x < x?and 1 < x2.

Hence, 0 < 22 + 2z 4+ 1 < 22 4 22 + 22 = 322
when x > 2.

e Can take C = 3 and k = 2 as witnesses instead.

lllustration of Big-O Notation
flx)=z“+2x+11s O(z?)

The part of the graph of f(x) = x?+2x+ 1
that satisfies f(x) < 4x? is shown in blue.

x242x+1<dxforx>1

% Big-O Notation

Both f(z)=z°+2x+1and g(x) = z°
are such that f(z) is O(g(xz)) andg(z) is O(f(x)) .

We s)ay that the two functions are of the same order. (More on this
later

If f(z) is O(g9(z)) and h(x) is larger than g(x) for all positive real
numbers, then f(z) is O(h(z)) .

Note that if |f(z)| < C|g(z)| for x > k and if ()| > [g(2)]
forall x, then|f(x)| < Clh(x)| if x> k. Hence, f(x) is O(h(z)) .

For many applications, the goal is to select the function g(x) in O(g(x))
as small as possible (up to multiplication by a constant, of course).

—— _,f‘ S

Using the Definition of Big-O Notation

Example: Show that 7x? is O(x3).

Solution: When x> 7, 7x¢2< x3. TakeC=1land k=7
as witnesses to establish that 7x? is O(x3).

(Would C = 7 and k = 1 work?)
Example: Show that n? is not O(n).

Solution: Suppose there are constants C and k for
which n? < Cn, whenever n > k. Then (by dividing
both sides of n? < Cn) by n, then n < C must hold for
all n > k. A contradiction!

—

= =

Big-O Estimates for Polynomials

Example: Let f(z) = ap2™ + ap_ 12" 1+ -+ a1x + a,

where 405 @1, .- -,%n are real numbers with a, #0.

Then f(X) 1S O(Xn), Uses triangle inequality,

an exercise in Section 1.8.
Proof: [fix)|=|ax ta X't tax ia]
Assuming x > 1 S |an|xn + |an—1| X o bet |a1|X1 + |ao|
=x"(|a,| + |a,.| /x+ -+ |a]|/x"+ |a,|/ x)
an(|an i |an-1 Rt |(11|+ |ao|)
Take C = |a,| + |a, | + - + |a,| and k = 1. Then f(x) is O(x").
The leading term a,x™ of a polynomial dominates its
growth.

ig-O Estimates for s
Important Functions

Example: Use big-O notation to estimate the sum of
the first n positive integers.

Solution: 1 +2F-- - n < nint n — n°
14+2+...+nis O(n?) takingC =1 and k = 1.

Example: Use big-O notation to estimate the factorial
function f(n)=n!l=1x2x---xn.

Solution:

mh e D d s e e e el

plis O’} takine €' = 1 and k = 1.

Continued —

,//"- 2
B
/

ig-O Estimates for some
Important Functions

Example: Use big-O notation to estimate log n!

Solution: Given that n! < n" (previous slide)
then log(n!) < n-log(n).
Hence, log(n!) is O(n-log(n)) taking C = 1 and k= 1.

4096
2048
1024
312
256
128
64
32
16

- N Bk o

Note the difference in behavior of functions as n gets larger

ing
Logarithms, Powers, and Exponents

Ifd>c>1, then

nc is O(n9), but n?is not O(n°).
If b>1 and c and d are positive, then

(log, n)c is O(n9), but nis not O((log, n)°).

If b>1 and dis positive, then

n? is O(b"), but b"is not O(n?).
Ifc>b>1, then

b" is O(c™), but c"is not O(b").

o 7',;/

Combinations of Functions

If f; (x)is O(g,(x)) and f, (x) is O(g,(x)) then
(f1+£2)(x) is O(max(|g,(x) |,[g2(x) |)).

e See next slide for proof

If f;(x)and f, (x) are both O(g(x)) then
(fi +f2)(x) is O(g(x)).

e See text for argument
If f;(x)is O(g,(x)) and f, (x) is O(g,(x)) then
(f1/2)(x) is O(g;(x)g,(x)).

e See text for argument

Combinations of Functions

If f;(x)is O(g,(x)) and f, (x) is O(g,(x)) then
(f1 +/2)(x) is O(max(|g,(x) [,1g,(x) D).

By the definition of big-O notation, there are constants C;,C, ,k,,k, such that
| f1 () < Cylg,(x) | when x > k; and f, (x) < C,|g,(x) | when x > k,.

|(f1+2))] = [fi(0) + f5(x)]
< lfl (X)| + [fz (X)| by the triangle inequality |a + b| < |a| + |b|
1 GO+ 2) = Cylg1(x) | + Cylg,(x) |
< Cylg(x) | + Colg(x) | where g(x) = max(|g;(x)LIg.(x)])
= (C;+) lgx0)|
= C|g(x)| where C = C; + C,
Therefore |(f; +f5)(x)| < C|g(x)| whenever x > k, where k = max(k,,k,).

Ordering Functions by Order of Growth

Put the functions below in order so that each function is
big-O of the next function on the list.

fi(n) = (1.5)"

f.(n) =8m+17* +111
f5(n) = (logn)~

f,(n) =27

f(n) =log (log n)

fe(n) = n* (log n)3

f(n) =27 (i +1)

fs(n) = B+ n(log n)?
£,(n) = 10000

ﬁo(n) = n!

We solve this exercise by successively finding the function that
grows slowest among all those left on the list.

* f,(n) = 10000 (constant, does not increase with)
-fs(n) =log (log n) (grows slowest of all the others)
*f,(n) = (logn)? (grows next slowest)

fs(n) = r (log n)3 (next largest, (log n)3factor smaller than any power of n)
f.(n) =8m+17n* +111 (tied with the one below)

*fs(n) = i+ n(log n)? (tied with the one above)

*f.(n) = (1.5)" (next largest, an exponential function)

of,(n) =27 (grows faster than one above since 2 > 1.5)
°f(n) =27 (n* +1) (grows faster than above because of the n* +1 factor)

*f.,(n) = n! (! grows faster than c” for every ¢)

e

Big-Omega Notation

Definition: Let fand g be functions from the set of
integers or the set of real numbers to the set of real
numbers. We say thatf(z) is Q(g(x))

if there are constants C and k such that [=
|f(35')‘ = C‘g(-’ﬂ)l when x > k. version of the lower

We Say that ‘ﬂX) iS big—Omega Ofg(X).” case Greek letter w.

Big-O gives an upper bound on the growth of a function,
while Big-Omega gives a lower bound. Big-Omega tells us
that a function grows at least as fast as another.

flx) is Q(g(x)) if and only if g(x) is O(f{x)). This follows
from the definitions. See the text for details.

Big-Omega Notation
Example: Show that f(z)=8z% 4+ 52° + 7 is
Qg(x)) where g(z) =2?.

Solution: f(z)=8z3 +5z2+7 > 8> forall
positive real numbers x.

e Isitalso the case that g(z) = z° is O(8z° + 52° + 7)?

7———_*__*‘&’_71; ARy R 1/

"

O is the upper case

Big-Theta Notation wersionofteiowe

case Greek letter 0.

Definition: Let fand g be functions from the set of
integers or the set of real numbers to the set of real

numbers. The function f(z) is O(g(z)) if
f(z) is O(g(x)) and f(z) is Q(g(x)).

We say that “f is big-Theta of g(x)” and also that “f(x) is of
order g(x)” and also that “f{x) and g(x) are of the same
order.”

f(z) is ©(g(x)) if and only if there exists constants C;,

C, and k such that C,g(x) < fix) <C,g(x) if x > k. This
follows from the definitions of big-O and big-Omega.

Big Theta Notation

Exam]z)le: Show that the sum of the first n positive integers
is ©(n?)

Solution: Let f{ln) =1+ 2 + = +n.

e We have already shown that f{n) is O(n?).

e To show that f(n) is Q(n?), we need a positive constant C
such that f{n) > Cn? for sufficiently large n. Summing only
the terms greater than n/2 we obtain the inequality

142+ +n=2[n/2]1+(n/2]+ 1)+ +n
> [n/2]+[n/2] + +[n/2]
= (0 —[n/2}+ 1) [n/2]
> (n/2)(n/2) =n?/4
e Taking C= %, fin) >Cn? for all positive integers n. Hence,
f(n) is Q(n?), and we can conclude that f{n) is ©(n?).

\

Big-Theta Notation

Example: Show that f{x) = 3x? + 8xlog x is O(x?).
Solution:

» 3x?+ 8xlog x < 11x* for x> 1,
since 0 < 8xlog x < 8x*.

Hence, 3x? + 8xlog x is O(x?).
» x?is clearly 0(3x? + 8xlog x)
« Hence, 3x? + 8xlog x is O(x?).

/’

Big-Theta Notation

When f(x) is ©(g(x)) it must also be the case that
g(x) is ©(f(z)).

Note that f(z) is ©(g(x)) if and only if it is the case
that f(z) is O(g(z)) and g(z) is O(f(x)).

Sometimes writers are careless and write as if big-O
notation has the same meaning as big-Theta.

\

g-Theta Estimates for
Polynomials
Theorem: Let f(z) = a,z2" + ap_12" 1+ -+ a1z + a,
where agp,ai,...,a, arereal numbers with a, #0.

Then f(x) is of order x* (or O(x")).

(The proof is an exercise.)

Example:

The polynomial f(z) = 8z° 4+ 52° + 10 is order of x° (or
O(x?)).

The polynomial f(x) = 82199 + 72100 + 299 + 522 + 25
is order of x1?° (or O(x1%%)).

Complexity of Algorithms

Section 3.3

— /

Section Summary

Time Complexity

Worst-Case Complexity

Algorithmic Paradigms

Understanding the Complexity of Algorithms

The Complexity of Algorithms

Given an algorithm, how efficient is this algorithm for
solving a problem given input of a particular size? To
answer this question, we ask:

e How much time does this algorithm use to solve a problem?

e How much computer memory does this algorithm use to
solve a problem?

When we analyze the time the algorithm uses to solve the
problem given input of a particular size, we are studying
the time complexity of the algorithm.

When we analyze the computer memory the algorithm
uses to solve the problem given input of a particular size,
we are studying the space complexity of the algorithm.

e : — o

he Complexity of Algorithms

In this course, we focus on time complexity. The space
complexity of algorithms is studied in later courses.

We will measure time complexity in terms of the number
of operations an algorithm uses and we will use big-O and
big-Theta notation to estimate the time complexity.

We can use this analysis to see whether it is practical to
use this algorithm to solve problems with input of a
particular size. We can also compare the efficiency of
different algorithms for solving the same problem.

We ignore implementation details (including the data
structures used and both the hardware and software
platforms) because it is extremely complicated to consider
them.

/ —

e

"

Time Complexity

To analyze the time complexity of algorithms, we determine the
number of operations, such as comparisons and arithmetic
operations (addition, multiplication, etc.). We can estimate the
time a computer may actually use to solve a problem using the
amount of time required to do basic operations.

We ignore minor details, such as the “house keeping” aspects of
the algorithm.

We will focus on the worst-case time complexity of an
algorithm. This provides an upper bound on the number of
operations an algorithm uses to solve a problem with input of a
particular size.

It is usually much more difficult to determine the average case
time complexity of an algorithm. This is the average number of
oFerations an algorithm uses to solve a problem over all inputs
of a particular size.

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm
for finding the maximum element in a finite sequence.

procedure max(a, a,,, a,: integers)
max = q,
fori:=2ton
if max < a; then max := q;
return max{max is the largest element}

Solution: Count the number of comparisons.
* The max < a; comparison is made n — 1 times.
 Each timeiis incremented, a test is made to see if /< n.
* One last comparison determines thati > n.
« Exactly2(n — 1) + 1 = 2n— 1 comparisons are made.

Hence, the time complexity of the algorithm is ®(n).

—

—

,,/

Jorst-Case Complexity of Linear
Search

Example: Determine the time complexity of the
linear SearCh algorliilbhﬂielinearsearch(xzinteger,

a, a,, ...,a,: distinct integers)

Jae=:

while (i < nand x # q)
i=1+1

if i < n then location := i

else location := 0

return location{location is the subscript of the term that equals x, or is 0 if
x is not found}

Solution: Count the number of comparisons.

* At each step two comparisons are made; i < n and x # a;.

* To end the loop, one comparison i < n is made.

* After the loop, one more i < n comparison is made.
If x = a;, 2i + 1 comparisons are used. If x is not on the list, 2n + 1
comparisons are made and then an additional comparison is used to
exit the loop. So, in the worst case 2n + 2 comparisons are made.
Hence, the complexity is O(n).

- —— /y‘/-‘

Average-Case Complexity of Linear Search

Example: Describe the average case performance of the
linear search algorithm. (Although usually it is very
difficult to determine average-case complexity, it is easy
for linear search.)

Solution: Assume the element is in the list and that the
possible positions are equally likely. By the argument on
the previous slide, if x = a;, the number of comparisons is

2i+1. susi0y d(ontl) | 2(142434..tn)in

n n

n(n-+1)
2]—|—1 —

2
n

Hence, the average-case complexity of linear search is O(n).

Worst-Case Complexity of Binary Search

Example: Describe the time complexity of binary
search in terms of the number of comparisons used.

procedure binary search(x: integer, a,a,,..., a,: increasing integers)
i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}
whilei<j
m = |(i +j)/2]
ifx>a,theni:=m+1
elsej:=m
if x = q; then location := i
else location := 0
return locationf{location is the subscript i of the term a; equal to x, or 0 if x is not found}

Solution: Assume (for simplicity) n = 2k elements. Note that k = log n.
* Two comparisons are made at each stage; i<j,and x> a,, .
« At the first iteration the size of the list is 2% and after the first iteration it is 21, Then 2k-2
and so on until the size of the list is 21 = 2.
» At the last step, a comparison tells us that the size of the list is the size is 2° = 1 and the
element is compared with the single remaining element.
* Hence, at most 2k + 2 = 2 log n + 2 comparisons are made.
* Therefore, the time complexity is © (log n), better than linear search.

Worst-Case Complexity of Bubble Sort

Example: What is the worst-case complexity of
bubble sort in terms of the number of comparisons

made? procedure bubblesort(a,,...,a : real numbers
with n = 2)
fori=1ton—1
forj:=1ton —i
if a; >a;,, then interchange g; and g;,,

J+1
la,..., a, is now in increasing order}

Solution: A sequence of n—1 passes is made through the list. On each pass n —
i comparisons are made.

(n) (n) e s o 2

The worst-case complexity of bubble sort is ®(n?) since 2R =

Sort

-

TR

_77/‘

—

orst-Case Complexity of Insertion

Example: What is the worst-case complexity of
insertion sort in terms of the number of comparisons

made?

Solution: The total number of
comparisons are:

04+ 3+..-4n =2l 4

Therefore the complexity is ©(n?).

procedure insertion sort(a,,...,a,:
real numbers with n = 2)
forj:=2ton
el
while g, > g
1:=1+1
m := q
fork:=0toj —i—1
Gt
a:=m

