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The Growth of Functions
— In both computer science and in mathematics, there are many 

times when we care about how fast a function grows.

— In computer science, we want to understand how quickly an 
algorithm can solve a problem as the size of the input grows. 
— We can compare the efficiency of two different algorithms for 

solving the same problem. 

— We can also determine whether it is practical to use a particular 
algorithm as the input grows. 

— We’ll study these questions in Section 3.3.

— Two of the areas of mathematics where questions about the 
growth of functions are studied are:
— number theory (covered in Chapter 4)  

— combinatorics (covered in Chapters 6 and 8)



Big-O Notation
   Definition: Let f and g be functions from the set of 

integers or the set of real numbers to the set of real 
numbers. We say that f(x) is O(g(x)) if there are constants 
C and k such that

    whenever  x > k. (illustration on next slide)

— This is read as “f(x) is big-O of g(x)” or   “g asymptotically 
dominates f.”

— The constants C and k are called witnesses to the 
relationship f(x) is O(g(x)). Only one pair of witnesses is 
needed. 



Illustration of Big-O Notation

f(x) is O(g(x)



Some Important Points about Big-
O Notation
— If one pair of witnesses is found, then there are infinitely 

many pairs.  We can always make the k or the C larger and 
still maintain the inequality                            . 
— Any pair C ̍ and k ̍ where C < C̍ and k < k ̍ is also a pair of 

witnesses since                                  whenever x > k ̍> k.

You may see  “ f(x) = O(g(x))” instead of “ f(x) is O(g(x)).”  
— But this is an abuse of the equals sign since the meaning is 

that there is an inequality relating the values of f and g, for 
sufficiently large values of x. 

— It is ok to write f(x) ∊ O(g(x)), because  O(g(x)) represents 
the set of functions that are O(g(x)).

— Usually, we will drop the absolute value sign since we will 
always deal with functions that take on positive values. 



Using the Definition of Big-O Notation
   Example: Show that                                    is            .

   Solution:  Since when x > 1,  x < x2 and 1 < x2 

               
— Can take C = 4 and k = 1 as witnesses to show that

                                                      (see graph on next slide)

— Alternatively, when x > 2, we have   2x ≤ x2 and 1 < x2. 
Hence,                                                                                   
when x > 2. 
— Can take C = 3 and k = 2 as witnesses instead.                                               

                                            



Illustration of Big-O Notation                                                                                                                     
                                is                                                 



Big-O Notation
— Both                                     and
    are such that                                 and                              .
    We say that the two functions are of the same order. (More on this 

later)

— If                                and h(x) is larger than g(x) for all positive real 
numbers, then                              . 

        
—  Note that  if                               for x > k and if
     for all x,    then                               if x > k. Hence,                              . 

— For many applications, the goal is to select the function g(x) in O(g(x)) 
as small as possible (up to multiplication by a constant, of course).



Using the Definition of Big-O Notation
   Example: Show that 7x2  is O(x3).

   Solution: When x > 7, 7x2 < x3. Take C =1 and k = 7 
as witnesses to establish that 7x2  is O(x3).

    (Would C = 7 and k = 1 work?)

    Example: Show that n2  is  not O(n).

    Solution: Suppose there are constants C and k for 
which n2  ≤ Cn, whenever n > k. Then  (by dividing 
both sides of n2  ≤ Cn) by n, then n  ≤ C must hold for 
all n > k. A contradiction!



Big-O Estimates for Polynomials
Example: Let 

where                                 are real numbers with an ≠0. 

   Then f(x) is O(xn).                           

Proof:  |f(x)| = |anxn + an-1 x
n-1 + ··· + a1x

1   + a0|

                       ≤ |an|xn + |an-1| x
n-1 + ··· + |a1|x

1 + |a0|

                       = xn (|an| + |an-1| /x + ··· + |a1|/xn-1 + |a0|/ xn)

                       ≤ xn (|an| + |an-1| + ··· + |a1|+ |a0|)

— Take C = |an| + |an-1| + ··· + |a0| and k = 1. Then f(x) is O(xn). 

— The leading term anxn of a polynomial dominates its 
growth.  

Uses triangle inequality, 
an exercise in Section 1.8.

   Assuming x > 1



Big-O Estimates for some 
Important Functions
   Example: Use big-O notation to estimate the sum of 

the first n positive integers.

   Solution:

   Example: Use big-O notation to estimate the factorial 
function 

   Solution:

Continued →



Big-O Estimates for some 
Important Functions

Example: Use big-O notation to estimate log n!

Solution: Given that                  (previous slide) 

then                                    .

Hence, log(n!) is O(n∙log(n)) taking C = 1 and k = 1.



Display of Growth of Functions

Note the difference in behavior of functions as n gets larger



Useful Big-O Estimates Involving 
Logarithms, Powers, and Exponents
— If d > c > 1, then 

            nc  is O(nd), but nd is not  O(nc). 

— If  b > 1  and c and d are positive, then 

        (logb  n)c  is O(nd), but nd is not O((logb  n)c). 

—  If  b > 1  and  d is positive, then 

            nd  is O(bn), but bn is not  O(nd).

—  If c > b > 1, then 

            bn  is O(cn), but cn is not  O(bn).



Combinations of Functions
— If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 
                     ( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).  
                                                           

— See next slide for proof

—  If  f1 (x) and f2 (x) are both O(g(x)) then 
                     ( f1 + f2 )(x) is O(g(x)).      

— See text for argument                                                       

—     If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 
                     ( f1 f2 )(x) is O(g1(x)g2(x)).                                                                                                                             

— See text for argument

     



Combinations of Functions
— If  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

( f1 + f2 )(x) is O(max(|g1(x) |,|g2(x) |)).

— By the definition of big-O notation, there are constants C1,C2 ,k1,k2 such that                                               
| f1 (x) ≤ C1|g1(x) | when x > k1 and f2 (x) ≤ C2|g2(x) | when x > k2 .

— |( f1 + f2 )(x)| = |f1(x) + f2(x)| 

≤ |f1 (x)| + |f2 (x)|      by the triangle inequality |a + b| ≤ |a| + |b|

— |f1 (x)| + |f2 (x)| ≤ C1|g1(x) | + C2|g2(x) | 

≤ C1|g(x) | + C2|g(x) | where  g(x) = max(|g1(x)|,|g2(x)|)

= (C1 + C2) |g(x)|
= C|g(x)|           where C = C1 + C2 

— Therefore |( f1 + f2 )(x)| ≤ C|g(x)| whenever x > k, where k = max(k1,k2).



Ordering Functions by Order of Growth
— Put the functions below in order so that each function is 

big-O of the next function on the list.
— f1(n) = (1.5)n

— f2(n) = 8n3+17n2  +111
— f3(n) = (log n )2

— f4(n) = 2n

— f5(n) = log (log n)
— f6(n) = n2 (log n)3

— f7(n) = 2n (n2  +1)
— f8(n) = n3+ n(log n)2 

— f9(n) = 10000
— f10(n) = n!

We  solve this exercise by successively finding the function that 
grows slowest among all those left on the list.

• f9(n) = 10000       (constant, does not increase with n)

•f5(n) = log (log n)     (grows slowest of all the others)

•f3(n) = (log n )2       (grows next slowest)

•f6(n) = n2 (log n)3   (next largest, (log n)3 factor smaller than any power of n)

•f2(n) = 8n3+17n2  +111    (tied with the one below)

•f8(n) = n3+ n(log n)2          (tied with the one above)

•f1(n) = (1.5)n         (next largest, an exponential function)

•f4(n) = 2n        (grows faster than one above since 2 > 1.5)

•f7(n) = 2n (n2  +1)     (grows faster than above because of the n2  +1 factor)

•f10(n) = n!             ( n!  grows faster than cn   for  every c)



Big-Omega Notation
   Definition: Let f and g be functions from the set of 

integers or the set of real numbers to the set of real 
numbers. We say that

    if there are constants C and k such that

                                            when x > k.

—  We say that “f(x) is big-Omega of g(x).”

— Big-O gives an upper bound on the growth of a function, 
while Big-Omega gives a lower bound. Big-Omega tells us 
that a function grows at least as fast as another.

— f(x) is  Ω(g(x)) if and only if g(x) is O(f(x)). This follows 
from the definitions. See the text for details.

Ω is the upper case 
version of the lower 
case Greek letter ω.



Big-Omega Notation
Example:  Show that                                        is

where                  .

Solution:                                                     for all 
positive real numbers x.

— Is it also the case that                     is                                  ?  



Big-Theta Notation
— Definition: Let f and g be functions from the set of 

integers or the set of real numbers to the set of real 
numbers. The function                                 if 

                                    and                              . 

—  We say that “f is big-Theta of g(x)” and also that “f(x) is of 
order g(x)”   and also that “f(x) and g(x) are of the same 
order.”   

—                                if and only if there exists constants C1 , 
C2 and k such that C1g(x) <  f(x) < C2 g(x)  if x > k. This 
follows from the definitions of big-O and big-Omega.

 Θ is the upper case 
version of the lower 
case Greek letter θ.



Big Theta Notation
   Example: Show that the sum of the first n positive integers 

is Θ(n2).
    Solution: Let f(n) = 1 + 2 + �∙∙  + n.

— We have already shown that f(n) is O(n2).
— To show that f(n) is Ω(n2), we need a positive constant C 

such that f(n) > Cn2   for sufficiently large n.  Summing only 
the terms greater than  n/2 we obtain the inequality

                1 + 2 + �∙∙  + n ≥  ⌈ n/2⌉ + (⌈ n/2⌉ +  1) + ∙∙∙  + n 
                                            ≥   ⌈ n/2⌉ + ⌈ n/2⌉ + ∙∙∙  + ⌈ n/2⌉
                                            =   (n  − ⌈ n/2⌉ + 1 ) ⌈ n/2⌉
                                        ≥   (n/2)(n/2) = n2/4
— Taking C = ¼,  f(n) > Cn2      for all positive integers n. Hence, 

f(n) is Ω(n2), and we can conclude that  f(n) is Θ(n2). 



Big-Theta Notation
  Example: Sh0w that f(x) = 3x2 + 8x log x is Θ(x2).

  Solution: 

— 3x2 + 8x log x  ≤  11x2   for x > 1,                                            
since 0 ≤ 8x log x ≤ 8x2 .

— Hence, 3x2 + 8x log x is O(x2).

— x2  is clearly     O(3x2  + 8x log x)

— Hence, 3x2 + 8x log x is Θ(x2).



Big-Theta Notation
— When                             it must  also be the case that

— Note that                               if and only if it is the case 
that                              and                             .

—  Sometimes writers are careless and write as if big-O 
notation has the same meaning as big-Theta.

                                                      



Big-Theta Estimates for 
Polynomials
Theorem: Let 

where                                 are real numbers with an ≠0. 

 Then f(x) is of order xn (or   Θ(xn)).
(The proof is an exercise.) 

Example: 

The polynomial                                         is order of x5 (or 
Θ(x5)). 

The polynomial                                                                           
is order of x199  (or Θ(x199) ).                

     



Section 3.3



Section Summary
— Time Complexity

— Worst-Case Complexity

— Algorithmic Paradigms

— Understanding the Complexity of Algorithms



The Complexity of Algorithms
— Given an algorithm, how efficient is this algorithm for 

solving a problem given input of a particular size? To 
answer this question, we ask:
— How much time does this algorithm use to solve a problem?

— How much computer memory does this algorithm use to 
solve a problem?

— When we analyze the time the algorithm uses to solve the 
problem given input of a particular size, we are studying 
the time complexity of the algorithm.

— When we analyze the computer memory the algorithm 
uses to solve the problem given input of a particular size, 
we are studying the space complexity of the algorithm.



The Complexity of Algorithms
— In this course, we focus on time complexity. The space 

complexity of algorithms is studied in later courses.
— We will measure time complexity in terms of the number 

of operations an algorithm uses and we will use big-O and 
big-Theta notation to estimate the time complexity.

— We can use this analysis to see whether it is practical to 
use this algorithm to solve problems with input of a 
particular size. We can also compare the efficiency of 
different algorithms for solving the same problem.

— We ignore implementation details (including the data 
structures used and both the hardware and software 
platforms) because it is extremely complicated to consider 
them.



Time Complexity
— To analyze the time complexity of algorithms, we determine the 

number of operations, such as comparisons and arithmetic 
operations (addition, multiplication, etc.). We can estimate the 
time a computer may actually use to solve a problem using the 
amount of time required to do basic operations. 

— We ignore minor details, such as the “house keeping” aspects of 
the algorithm.

— We will focus on the worst-case time complexity of an 
algorithm. This provides an upper bound on the number of 
operations an algorithm uses to solve a problem with input of a 
particular size.

— It is usually much more difficult to determine the average case 
time complexity of an algorithm. This is the average number of 
operations an algorithm uses to solve a problem over all inputs 
of a particular size.



Complexity Analysis of Algorithms
     Example: Describe the time complexity of the algorithm    

for finding   the maximum element in a  finite sequence.

    

    

                          

          

procedure max(a1, a2, …., an: integers)
max := a1

for i := 2 to n
if max < ai then max := ai

return max{max is the largest element}

 Solution: Count the number of comparisons.
•  The max < ai comparison is made n − 1 times.
•   Each time i is incremented, a test is made to see if i ≤ n.
•   One last comparison determines that i > n.               
•   Exactly 2(n − 1) + 1 = 2n − 1 comparisons are made.

 Hence, the time complexity of the algorithm is  Θ(n).



Worst-Case Complexity of Linear 
Search
   Example: Determine the time complexity of the 

linear search algorithm.procedure linear search(x:integer, 
               a1, a2, …,an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)
      i := i + 1
if i ≤ n then location := i
else location := 0
return location{location is the subscript of the term that equals x, or is 0 if 

x is not found}

Solution: Count the number of comparisons.
• At each step two comparisons are made; i ≤ n and x ≠ ai .
• To end the loop, one comparison i ≤ n is made.
• After the loop, one more i ≤ n  comparison is made. 

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1 
comparisons are made and then an additional comparison is used to 
exit the loop. So, in the worst case 2n + 2 comparisons are made.  
Hence, the complexity is Θ(n).



Average-Case Complexity of Linear Search
  Example: Describe the average case performance of the 

linear search algorithm. (Although usually it is very 
difficult to determine average-case complexity, it is easy 
for linear search.)

   Solution: Assume the element is in the list and that the 
possible positions are equally likely. By the argument on 
the previous slide, if x = ai , the number of comparisons is       
2i + 1.

   Hence,  the average-case complexity of linear search is Θ(n). 



Worst-Case Complexity of Binary Search 
   Example: Describe the time complexity of binary 

search in terms of the number of comparisons used.
   procedure binary search(x: integer, a1,a2,…, an: increasing integers)
    i := 1 {i is the left endpoint of interval}
    j := n {j is right endpoint of interval}
    while i < j
           m := ⌊(i + j)/2⌋
           if x > am then i := m + 1
           else j := m
     if x = ai then location := i
     else location := 0
     return location{location is the subscript i of the term ai  equal to x, or 0 if x is not found} 

Solution:  Assume (for simplicity) n = 2k elements. Note that k = log n.  
•  Two comparisons are made at each stage;   i < j, and x > am .
•  At the first iteration the size of the list is 2k  and after the first iteration it is 2k-1.  Then  2k-2 
and so on until the size of the list is 21 = 2. 
•  At the last step, a comparison tells us that the size of the list is the size is 20 = 1 and the 
element is compared with the single remaining element.  
•  Hence, at most 2k + 2 = 2 log n + 2 comparisons are made. 
•  Therefore, the time complexity is Θ (log n), better than linear search. 



Worst-Case Complexity of Bubble Sort
   Example: What is the worst-case complexity of 

bubble sort in terms of the number of comparisons 
made? procedure bubblesort(a1,…,an: real numbers 

                            with n ≥ 2)
    for i := 1 to n− 1
        for j := 1 to n − i
             if aj >aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}

Solution: A sequence of n−1 passes is made through the list. On each pass n − 
i comparisons are made.

The worst-case complexity of bubble sort is  Θ(n2) since                                         .
                                                                            



Worst-Case Complexity of Insertion 
Sort
   Example: What is the worst-case complexity of 

insertion sort in terms of the number of comparisons 
made? procedure insertion sort(a1,…,an: 

                real numbers with n ≥ 2)
     for j := 2 to n
         i := 1
         while aj > ai

              i := i + 1
          m := aj

          for k := 0 to j  − i − 1
               aj-k := aj-k-1

           ai := m

          
    

Solution: The total number of 
comparisons are:

Therefore the complexity is Θ(n2).


