

Palestine Technical University- Kadoorie (PTUK)

Mechanical Engineering Department

Summer Semester, 2023/2024

12210244: Dynamics

Student Name:	
Student ID:	
Homework #:	
Instructor Name:	Dr. Hammam S. R. Daraghma
Due Date:	14^{th} , Aug. 2024
Date of Submission:	

Exercise 1. The position coordinate of a particle which is confined to move along a straight line is given by $s = 2t^3 - 24t + 6 m$, where s is measured in meters from a convenient origin and t is in seconds. Determine:

- 1. The time required for the particle to reach a velocity of 72 m/sec.
- 2. The acceleration of the particle when v = 30 m/sec.
- 3. The net displacement of the particle during the interval from t = 1 sec to t = 4 sec.

Ans.
$$3 = 2t^{3} - 24t + 6$$

 $U = 6t^{2} - 24$
 $a = 12t$
 $1 - 4t^{2} = 7t^{2} = 6t^{2} - 24$
 $= 5(4) - 5(1)$
 $= 2(64) - 24(4) + 6$
 $- (2 - 24 + 6)$
 $= 54t^{2} = 96$
 $t^{2} = 16$
 $6 = 4sc$
 $2 - 16t^{2} = 96$
 $t^{2} = 16$
 $6 = 4sc$
 $2 - 10t^{2} = 30 = 6t^{2} - 24$
 $6t^{2} = 54$
 $t^{2} = 9$
 $t^{2} = 3$
 $a(t = (12)(3) = 36 \text{ m/sec}^{2}$

Exercise 2. A particle travels along a straight line with an acceleration of $a = 10 - 0.2s \ m/sec^2$, where s is measured in meters. We need to determine the velocity of the particle when s = 10 m if v = 5 m/sec at s = 0 m.

Ans.

Exercise 3. The system is initially at rest with no slack in the cable, and the mass and friction of the pulleys are negligible. Determine the initial acceleration of the 15-kg block if:

- 1. $T=20\ N$
- 2. T = 30 N

15 kg 30° $\mu_{s} = 0.50$ $\mu_{k} = 0.40$ N Ans. 2 Fy =0 N+Tsin30 - mg =0 N = mg - Toin 30 = 147.15 - I FR $2-87T - N N_{k} = ma$ $86 \cdot 1 - (132 \cdot 5)(6 \cdot 4)$ = 15 a a = 2-216Fr = 1's N = 73.575 - I to check 2T+TC> 20 = 2.87T FR > 2T+T cos30 No mothin T= 20 => N= 137.15 N FR = 68-575N 2.877 = 57.82 FR < 2T+T cosso There is motion $T = 30 \Rightarrow N = 132 - 15 N$ FR = 66.075 N2.877 = 86.1

Exercise 4. The 2 kg collar is released from rest at A and slides down the inclined fixed rod in the vertical plane. The coefficient of kinetic friction is 0.40. Calculate:

Exercise 5. The 4 kg ball and the attached light rod rotate in the vertical plane about the fixed axis at O. If the assembly is released from rest at $\theta = 0^{\circ}$ and moves under the action of the 60 N force, which is maintained normal to the rod, determine the velocity v of the ball as it approaches $\theta = 90^{\circ}$. Treat the ball as a particle.

Exercise 6. Sphere A collides with sphere B as shown in the figure. If the coefficient of restitution is e = 0.5, determine the x- and y-components of the velocity of each sphere immediately after impact. Motion is confined to the x-y plane.

$$(\sqrt{a})_{k} = 3 \sin \sqrt{3}$$

$$= 2.12$$

$$(\sqrt{a})_{k} = 3 \sin \sqrt{3}$$

$$= 2.12$$

$$(\sqrt{a})_{k} = -12 \sin 3 \circ 10 \text{ kg}$$

$$= -6$$

$$(\sqrt{a})_{k} = 3 \cos \sqrt{3}$$

$$= 2.12$$

$$(\sqrt{a})_{k} = 3 \cos \sqrt{3}$$

$$= 2.12$$

$$(\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = 2.12$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = 12 \cos 3 \circ (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = (\sqrt{a})_{k} = -6$$

$$(\sqrt{a})_{k} = (\sqrt{a})_{k} = -(\sqrt{a})_{k} = -(\sqrt{a})_$$

$$(\mathcal{Q}_{A})_{n} = -1 \qquad 7c$$

$$(\mathcal{Q}_{A})_{n} = 5.24$$

7 of 8

(

Ans.

$$\begin{aligned}
& \left(\bigcup_{A}^{n} \right)_{X} = (-1)(\cos 20) - (2 - 12) \sin 20 \\
& = -1 \cdot 66 \\
(\bigcup_{A}^{n})_{Y} = (-1)(\sin 20) + (2 - 12)(\cos 20) \\
& = (-1)(\sin 20) + (2 - 12)(\cos 20) \\
& = (-1)(\sin 20) + (2 - 12)(\cos 20) \\
& = (-1)(\cos 20) + (-6)(\cos 20) \\
& = (-1)(\cos 20) + (-6)(\sin 20) \\
& = (-1)(\cos 20) + (-6)(\cos 20) \\
& = (-1)(\cos 20) + (-6)($$