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1 Initial Value Problem for Ordinary Differential

Equations

We consider the problem of numerically solving a system of differential equations of the form

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α (given) .

Such a problem is called the Initial Value Problem or in short IVP, because the initial

value of the solution y(a) = α is given.

Since there are infinitely many values between a and b, we will only be concerned here to

find approximations of the solution y(t) at several specified values of t in [a, b], rather than

finding y(t) at every value between a and b.

Denote

• yi = (an approximate value of y(at) at t = ti.)

• Divide [a, b] into N equal subintervals of length h:

t0 = a < t1 < t2 < · · · tN = b.
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a = t0 t1 t2 tN = b

• h =
b − a

N
(step size)
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The Initial Value Problem
Given

(1) y′ = f(y, t), a ≤ t ≤ b

(2) The initial value y(t0) = y(a) = α

(3) The step-size h.

Find yi (an approximation of y(ti)), i = 1, · · · , N, where N =
b − a

h
.

We will briefly describe here the well-known numerical methods for solving the IVP, such as

the

• The Euler Method

• The Taylor Method of higher order

• The Runge-Kutta Method

• The Adams-Moulton Method

• The Milne Method

etc.

We will also discuss the error behavior and convergence of these methods.

However, before doing so, we state a result without proof, in the following section on the

existence and uniqueness of the solution for the IVP. The proof can be found in most

books on ordinary differential equations.

Existence and Uniqueness of the Solution for the IVP
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Theorem: (Existence and Uniqueness Theorem for the IVP).

The initial value problem: {
y′ = f(t, y)
y(a) = α

has a unique solution y(t) for a ≤ t ≤ b, if f(t, y) is continuous on the domain, given by
R = {a ≤ t ≤ b, ∞ < y < ∞} and satisfies the following inequality:

|f(t, y)− f(t, y∗)| ≤ L|y − y∗|,

Whenever (t, y) and (t, y∗) ∈ R.

�

Definition. The condition |f(t, y) − f(t, y∗)| ≤ L|y − y∗| is called the Lipschitz Condi-

tion. The number L is called a Lipschitz Constant.

Definition.

A set S is said to be convex if whenever (t1, y1) and (t2, y2) belong to S, the point

(
(1 −

λ)t1 + 2t2, (1 − λ)y1 + λy2) also belongs to S for each λ when 0 ≤ λ ≤ 1.

Simplification of the Lipschitz Condition for the Convex Domain

If the domain happens to be a convex set, then the condition of the above Theorem reduces

to ∣∣∣∣∂f

∂y
(t, y)

∣∣∣∣ ≤ L for all (t, y) ∈ R.

Liptischitz Condition and Well-Posednes

Definition.

An IVP is said to be well-posed if a small perhubation in the data of the problem leads to

only a small change in the solution.
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Since numerical computation may very well introduce some perhubations to the problem, it

is important that the problem that is to be solved is well-posed.

Fortunately, the Lipschitz condition is a sufficient condition for the IVP problem to be well-

posed.

Theorem (Well-Posedness of the IVP problem).
If f(t, y) Satisfies the Lipschitz Condition, then the IVP is well-posed.

2 The Euler Method

One of the simplest methods for solving the IVP is the classical Euler method.

The method is derived from the Taylor Series expansion of the function y(t).

The function y(t) has the following Taylor series expansion of order n at t = ti+1:

y(ti+1) = y(ti) + (ti+1 − ti)y
′(ti) +

(ti+1 − ti)

2!

2

y′′(ti) + · · · + (ti+1 − ti)

n!

n

y(n)(ti) +

(ti+1 − ti)

(n + 1)!

n+1

yn+1(ξi), where ξi is in (ti, ti+1).

Substitute h = ti+1 − ti. Then

Taylor Series Expansion under n of y(t)

y(ti+1) = y(ti) + hy′(ti) +
h2

2!
y′′(ti) + · · · + hn

n!
y(n)(ti) +

hn+1

(n + 1)!
y(n+1)(ξi).

For n = 1, this formula reduces to

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ξ).
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The term =
h2

2!
y(2)(ξi) is call the remainder term.

Neglecting the remainder term, we have

Euler’s Method

yi+1 = yi + hy′(ti)

= yi + hf(ti, yi),
i = 0, 1, 2, · · · , N − 1

This formula is known as the Euler method and now can be used to approximate y(ti+1).

Geometrical Interpretation

y(tN)

= y(b)

y(t2)

y(t1)

y(t0)

= y(a) = α

a t1 t2 tN−1 b = tN
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Algorithm: Euler’s Method for IVP

Input: (i). The function f(t, y)
(ii). The end points of the interval [a, b] : a and b
(iii). The initial value: α = y(t0) = y(a)

Output: Approximations yi+1 of y(ti + 1), i = 0, 1, · · · , N − 1.

Step 1. Initialization: Set t0 = a, y0 = y(t0) = y(a) = α.

and N =
b − a

h
.

Step 2. For i = 0, 1, · · · , N − 1 do

Compute yi+1 = yi + hf(ti, yi)

End

Example: y′ = t2 + 5, 0 ≤ t ≤ 1.

y(0) = 0, h = 0.25

The points of subdivisions are: t0 = 0, t1 = 0.25, t2 = 0.50, t3 = 0.75 and t4 = 1.

i = 0 : t1 = t0 + h = 0.25

y1 = y0 + hf(t0, y0) = 0 + .25(5) = 1.25 (exact value of y(1) : 1.2552)

i = 1 : t2 = t1 + h = 0.50

y2 = y1 + hf(t1, y1)

= 1.25 + 0.25(t21 + 5) = 1.25 + 0.25((0.25)2 + 5)

= 2.5156 (exact value of y(2) : 2.5417)

i = 2 : t3 = t2 + h = 0.75

y3 = y2 + hf(t2, y2)

= 2.5156 + .25((.5)2 + 5) = 3.8281 (exact value of y(3) : 3.8906)

Note: The exact values above are correct up to 4 decimal digits.

Example: y′ = t2 + 5, 0 ≤ t ≤ 2,
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y(0) = 0, h = 0.5

So, the points of subdivisions are: t0 = 0, t1 = 0.5, t2 = 1, t3 = 1.5, t4 = 2.

We compute y1, y2, y3, and y4, which are, respectively, approximations to y(0.5), y(1), y(1.5),

and y(2).

i = 0 : y1 = y0 + hf(t0, y0) = y(0) + hf(0, 0) = 0 + 0.5 × 5 = 2.5

(exact Value = 2.5417).

i = 1 : y2 = y1 + hf(t1, y1) = 2.5 + 0.5((0.5)2 + 5) = 5.1250

(exact Value = 5.3333).

i = 2 : y3 = y2 + hf(t2, y2) = 5.1250 + 0.5(t22 + 5) = 5.1250 + 0.5(1.5) = 8.1250

(exact Value = 8.6250)

The Errors in Euler’s Method

The approximations obtained by a numerical method to solve the IVP are usually subjected

to three types of errors:

• Local Truncation Error

• Global Truncation Error

• Round-off Error

Definition. The local truncation error is the error made at a single step due to the

truncation of the series used to solve the problem.
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Definition. The global truncation error is the truncation error at any step, that is,

the total of the accumulative single-step truncation errors at previous steps.

Recall that the Euler Method was obtained by truncating the Taylor series

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) + · · ·

after two terms. Thus, in obtaining Euler’s method, the first term neglected was
h2

2
y′′(t).

So the local error in Euler’s method is: EL =
h2

2
y′′(ξi),

where ξi lies between ti and ti+1. In this case, we say that the local error is of order h2,

written as O(h2).

On the other hand, the global truncation error is of order h : O(h), as can be seen from the

following theorem.

Denote the global error at Step i by Ei, that is, Ei = y(ti) − yi.

Below we give a bound for this error assuming that certain properties of the derivatives of

the solution are known. The proof of the result can be found in the book by Gear [Numerical

Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Inc., (1971)]
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Theorem: (Global Error Bound for the Euler Method)

Let y(t) be the unique solution of the IVP: y′ = f(t, y); y(a) = α.

a ≤ t ≤ b,−∞ < y < ∞,

Let L and M be two numbers such that

∣∣∣∣∂f(t, y)

∂y

∣∣∣∣ ≤ L, and ||y′′(t)|| ≤ M in [a, b].

Then the global error Ei at t = ti satisfies

|Ei| =

∣∣∣∣y(ti) − yi

∣∣∣∣ ≤ hM

2L
(eL(ti−a) − 1).

Thus, The global error bound for Euler’s method depends upon h, whereas the

local error depends upon h2.

Remark. Since the exact solution y(t) of the IVP is not known, the above bound may not

be of practical importance as far as knowing how large the error can be a priori. However,

from this error bound, we can say that the Euler method can be made to converge faster by

decreasing the step-size. Furthermore, if the equalities, L and M of the above theorem can

be found, then we can determine what step-size will be needed to achieve a certain accuracy,

as the following example shows.
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Example:
dy

dt
=

t2 + y2

2
, y(0) = 0

0 ≤ t ≤ 1, −1 ≤ y(t) ≤ 1.

Determine how small the step-size should be so that the error

does not exceed ε = 10−4.

Since f(t, y) =
t2 + y2

2
, we have

∂f

∂y
= y

Thus,

∣∣∣∣∂f

∂y

∣∣∣∣ ≤ 1 for all y, giving L = 1.

To find M , we compute the second-derivative of y(t) as follows:

y′ =
dy

dt
= f(t, y)(Given)

By implicit differentiation, y′′ =
∂f

∂t
+ f

∂f

∂y

= t +

(
t2 + y2

2

)
y = t +

y

2
(t2 + y2)

So, |y′′(t)| = |t +
y

2
(t2 + y2)| ≤ 2, for 1 ≤ y ≤ 1.

Thus, M = 2,

and |Ei| = |y(ti) − yi| ≤ 2h

2L
(e(ti) − 1) = h(e(ti) − 1) = h(e − 1).

Now, for the error not to exceed 10−4, we must have:

h(e − 1) < 10−4 or h <
10−4

e − 1
≈ 5.8198 × 10−5.

3 High-order Taylor Methods

Recall that the Taylor’s series expansion of y(t) of degree n is given by
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y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) + · · · + hn

n!
y(n)(ti) +

hn+1

(n + 1)!
y(n+1)(ξi)

Now,

(i) y′(t) = f(t, y(t)) (given).

(ii) y′′(t) = f ′(t, y(t)).

(iii) y(i)(t) = f (i−1)(t, y(t)), i = 1, 2, . . . , n.

Thus,

y(ti+1) = y(ti)+hf(ti, y(ti))+
h2

2
f ′(ti, y(ti))+· · ·+ hn−1

(n − 1)!
f (n−1)(ti, yi)+

hn

n!
f (n−1)(ti, y(ti))+

hn+1

(n + 1)!
f (n−1)(ξi, y(ξi)

= y(ti) + h

[
f(ti, y(ti)) +

h

2
f ′(ti, y(ti)) + · · · + hn−1

n!
fn−1(ti, y(ti))

]
+ Remainder Term

Neglecting the remainder term the above formula can be written in compact form as follows:

yi+1 = yi + hTk(ti, yi), i = 0, 1, · · · , N − 1, where Tk(ti.yi) is defined by:

Tk(ti, y1) = f(ti, yi) +
h

2
f ′(ti, yi) + · · ·+ hk−1

k!
f (k−1)(ti, yi)

So, if we truncate the Taylor Series after (k+1) terms and use the truncated series to obtain

the approximating of y1+1 of y(ti+1), we have the following of k-th order Taylor’s algo-

rithm for the IVP.
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Taylor’s Algorithm of order k for IVP

Input: (i) The function f(t, y)

(ii) The end points: a and b

(iii) The initial value: α = y(to) = y(a)

(iv) The order of the algorithm: k

(v) The step size: h

Step 1 Initialization: t0 = a, y0 = α, N =
b − a

h

Step 2. For i = . . . , N − 1 do

2.1 Compute Tk(ti, yi) = f(ti, yi) +
h

2
f ′(ti, yi) + . . . +

hk−1

k!
f (k−1)(ti, yi)

2.2 Compute yi+1 = yi + hTk(ti, yi)

End

Note: With k = 1, the above formula for yi+1, reduces to Euler’s method.

Example:

y′ = y − t2 + 1, 0 ≤ t ≤ 2, y(0) = 0.5, h = 0 · 2.
f(t, y(t)) = y − t2 + 1 (Given).

f ′(t, y(t)) =
d

dt
(y − t2 + 1) = y′ − 2t

= y − t2 + 1 − 2t

f ′′(t, y(t)) =
d

dt
(y − t2 + 1 − 2t) = y − t2 + 1 − 2t − 2 = y − t2 − 2t − 1

so,

y(0.2) ' y1 = y0 + hf(t0, y(t0)) +
h2

2
f ′(t0, y(t0))

= 0.5 + 0.2 × 1.5 +
(0.2)2

2
(0.5 + 1) = 2.2300check.

y(0.4) ' y2 = 1.215800
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4 Runge-Kutta Methods

• The Euler’s method is the simplest to implement; however, even for a reasonable

accuracy the step-size h needs to be very small.

• The difficulties with higher order Taylor’s series methods are that the derivatives of

higher orders of f(t, y) need to be computed, which are very often difficult to compute/

needles to say that if f(t, y) is not explicity known in many areas.

The Runge-Kutta methods aim at achieving the accuracy of higher order Taylor series meth-

ods without computing the higher order derivatives.

We first develop the simplest one: The Runge-Kutta Methods of order 2.

The Runge-Kutta Methods of order 2

Suppose that we want an expression of the approximation yi+1 in the form:

yi+1 = yi + α1k1 + α2k2, (4.1)

where k1 = hf(ti, yi), (4.2)

and

k2 = hf(ti + αh, yi + βk1). (4.3)
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The constants α1 and α2 and α and β are to be chosen so that the formula is as accurate as

the Taylor’s Series Method with n = 1.

To develop the method we need an important result from Calculus: Taylor’s series for

function to two variables.

Taylor’s Theorem for Function of Two Variables

Let f(t, y) and its partial derivatives of orders up to (n + 1) are continuous in the domain
D = {(t, y)|a ≤ t ≤ b, c ≤ y ≤ d}.
Then

f(t, y) = f(t0, y0) +

[
(t − t0)

∂f

∂t
(t0, y0) + (y − y0)

∂f

∂y
(t0, y0)

]
+ · · ·

+

[
1

n!

n∑
h=0

(n

i
)

(t − t0)
h−i(y − y0)

i ∂nf

∂tn−1∂yi
(t0, y0)

]
+ Rn(t, y),

where Rn(t, y) is the remainder after n terms and involves the partial derivative of order
n + 1.

Using the above theorem with n = 1, we have

f(ti + αh, yi + βk1) = f(ti, yi) + αh
∂f

∂t
(ti, yi) + βk1

∂f

∂y
(ti, yi) (4.4)

From (4.4) and (4.3), we obtain

k2

h
= f(ti, yi) + αh

∂f

∂t
(ti.yi) + βk1

∂f

∂y
(ti, yi). (4.5)

Again, substituting the value of k1 from (4.2) and k2 from (4.3) in (4.1) we get (after some

rearrangment):
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yi+1 = yi + α1hf(ti, yi) + α1h

[
f(ti, yi) + αh

∂f

∂t
(ti, yi) + βhf(ti, yi)

∂f

∂y
(ti, yi)

]

= yi + (α1 + α2)hf(ti, yi) + α2h
2

[
α

∂f

∂t
(ti, yi) + βf(ti, yi)

∂f

∂y
(ti, yi)

] (4.6)

Also, note that y(ti+1) = y(ti) + hf(ti, yi) +
h2

2

(
∂f

∂t
(ti, yi) + f(ti, yi)

∂f

∂y
(ti, yi)

)
+ higher

order terms.

So, neglecting the higher order terms, we can write

yi+1 = yi + hf(ti, yi) +
h2

2

(
∂f

∂t
(ti, yi) + f

∂f

∂y
(ti, yi)

)
. (4.7)

If we want (4.6) and (4.7) to agree for numerical approximations, then we must have

• α1 + α2 = 1 (comparing the coefficients of hf(ti, yi)).

• α2α =
1

2
(comparing the coefficients of h2 ∂f

∂t
(ti, yi).

• α2β =
1

2
(comparing the coefficents of h2f(ti, yi)

∂f

∂y
(tiyi).

Since the number of unknowns here exceeds the number of equations, there are infinitely

many possible solutions. The simplest solution is:

α1 = α2 =
1

2
, α = β = 1 .

With these choices we can generate yi+1 from yi as follows. The process is known as the

Modified Euler’s Method.
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Generating yi+1 from yi in Modified Euler’s Method

yi+1 = yi +
1

2
(k1 + k2),

where k1 = hf(ti, yi)

k2 = hf(ti + h, yi + k1).

or

yi+1 = yi +
h

2

[
f(ti, yi) + f(ti + h, yi + hf(ti, yi)

]

Algorithm: The Modified Euler Method

Inputs: The given function: f(t, y)
The end points of the interval: a and b
The step-size: h
The initial value y(t0) = y(a) = α

Outputs: Approximations yi+1 of y(ti+1) = y(t0 + ih),
i = 0, 1, 2, · · · , N − 1

Step 1 (Initialization)
Set t0 = a, y0 = y(t0) = y(a) = α

N =
b − a

h

Step 2 For i = 0, 1, 2, · · · , N − 1 do
Compute k1 = hf(ti, yi)
Compute k2 = hf(ti + h, yi + k1)

Compute yi+1 = yi +
1

2
(k1 + k2).

End

Local Error in the Modified Euler Method

Since in deriving the modified Euler method, we neglected the terms involving h3 and higher

powers of h, the local error for this method is O(h3). Thus with the Modified Euler
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method, we will be able to use larger step-size h than the Euler Method to obtain

the same accuracy.

Example: y′ = t + y, y(0) = 1

h = 0.01, y0 = y(0) = 1.

i = 0 : y1 = y0 +
1

2
(k1 + k2)

k1 = hf(t0, y0) = 0.01(0 + 1) = 0.01
k2 = hf(t0 + h, y0 + k1) = 0.01 × f(0.01, 1 + 0.01)

= 0.01 × (0.01 + 1.01) = 0.01 × 1.02 = 0.0102

y(0.01) ≈ y1 = 1 +
1

2
(0.01 + 0.0102) = 1.0101

i = 1 : y2 = y1 +
1

2
(k1 + k2)

k1 = hf(t1, y1)
= 0.01 × f(0.01, 1.0101) = 0.01 × (0.01 + 1.0101)
= 0.0102

k2 = hf(t1 + h, y1 + k1)
= 0.01 × f(0.02, 1.0101 + 0.0102) = 0.01 × (0.02 + 1.0203)
= −0.0104

y(0.02) ≈ y2 = 1.0101 +
1

2
(0.0102 + 0.0104) = 1.0204

The Midpoint and Heun’s Methods

In deriving the modified Euler’s Method, we have considered only one set of possible values

of α1, α2, α1 and β. We will now consider two more sets of values.

• α = 0, α2 = 1, α = β =
1

2
.

This gives us the Midpoint Method.
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The Midpoint Method

yi+1 = yi + k2

where k1 = hf(ti, yi)

k2 = hf

(
ti +

h

2
, yi +

k1

2

)

or

yi+1 = yi+hf

(
ti+

h

2
, yi+

h

2
f(ti, yi)

)
, i = 0, 1, . . . , N−1.

• α1 =
1

4
, β1 =

3

4
, α = β =

2

3

Then we have Heun’s Method.

Heun’s Method

yi+1 = yi +
1

4
k1 +

3

4
k2

where k1 = hf(ti, yi)

k2 = hf

(
ti +

2

3
h, yi +

2

3
k1

)

or

yi+1 = yi +
h

4
f(ti, yi) +

3h

4
f

(
ti +

2

3
h, yi +

2h

3
f(ti, yi)

)
, i = 0, 1, · · · , N − 1

Heun’s Method and the Modified Euler’s Method are classified as the Runge-Kutta

methods of order 2.
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The Runge-Kutta Method of order 4.

A method very widely used in practice is the Runge-Kutta method of order 4. It’s derivation

is complicated. We will just state the method, without proof.

Algorithm: The Runge-Kutta Method of Order 4

Inputs: f(t, y) - the given function
a, b - the end points of the interval
α - the initial value y(t0)
h - the step size

Outputs: The approximations yi+1 of y(ti+1), i = 0, 1, · · · , N − 1

Step 1: (Initialization)
Set t0 = a, y0 = y(t0) = y(a) = α

N =
b − a

h
.

Step 2: (Computations of the Runge-Kutta Coefficients)
For i = 0, 1, 2, · · · , n do
k1 = hf(ti, yi)

k2 = hf(ti +
h

2
, yi +

1

2
k1)

k3 = hf(ti +
h

2
, yi +

1

2
k2)

k4 = hf(ti + h, yi + k3)

Step 3: (Computation of the Approximate Solution)

Compute: yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4)

The Local Truncation Error: The local truncation error of the Runge-Kutta Method of

order 4 is O(h5).
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Example:

y′ = t + y, y(0) = 1

h = 0.01

Let’s complete y(0.01) using the Runge-Kutta Method of order 4.

i = 0

y(0.01) ≈ y1 = y0 +
1

6
(k1 + 2k2 + 2k3 + k4)

where k1 = hf(t0, y0) = 0.01f(0, 1) = 0.01 × 1 = 0.01.

k2 = hf(t0 +
h

2
, y0 +

k1

2
) = 0.01f

(
0.01

2
, 1 +

0.01

2

)
= 0.01

[
0.01

2
+

1 + 0.01

2

]
= 0.0101.

k3 = hf

(
t0 +

h

2
, y0 +

k2

2

)
= h

(
t0 +

h

2
+ y0 +

k2

2

)
= 0.0101005.

k4 = hf(t0 + h, y0 + k3) = h(t0 + h + y0 + k3) = 0.01020100

y1 = y0 +
1

6
(k1 + 2k2 + 2k3 + k4) = 1.010100334

and so on.


