Equations: IVP Lecture Notes on Numerical Differential

Professor Biswa Nath Datta

DeKalb, IL. 60115 USA Department of Mathematical Sciences Northern Illinois University

File faclib/dattab/LECTURE-NOTES/diff-equation-S06.tex, 5/1/2008 at 13:17, version 7

E−mail: dattab@math.niu.edu

URL: www.math.niu.edu/~dattab

1 Initial Value Problem for Ordinary Differential Equations

We consider the problem of numerically solving a system of differential equations of the form

$$
\frac{dy}{dt} = f(t, y), \ a \le t \le b, \ y(a) = \alpha \text{ (given)}.
$$

Such a problem is called the **Initial Value Problem** or in short **IVP**, because the initial value of the solution $y(a) = \alpha$ is given.

Since there are infinitely many values between a and b , we will only be concerned here to find approximations of the solution $y(t)$ at several specified values of t in [a, b], rather than finding $y(t)$ at every value between a and b.

Denote

- $y_i =$ (an approximate value of $y(at)$ at $t = t_i$.)
- Divide [a, b] into N equal subintervals of length h :

The Initial Value Problem Given (1) $y' = f(y, t), a \le t \le b$ (2) The initial value $y(t_0) = y(a) = \alpha$ (3) The step-size h . Find y_i (an approximation of $y(t_i)$), $i = 1, \dots, N$, where $N = \frac{b-a}{h}$.

We will briefly describe here the well-known numerical methods for solving the IVP, such as the

- The **Euler Method**
- The **Taylor Method** of higher order
- The **Runge-Kutta Method**
- The **Adams-Moulton Method**
- The **Milne Method**

etc.

We will also discuss the error behavior and convergence of these methods.

However, before doing so, we state a result **without proof**, in the following section on the **existence** and **uniqueness** of the solution for the IVP. The proof can be found in most books on ordinary differential equations.

Existence and Uniqueness of the Solution for the IVP

 \blacksquare

Theorem: (Existence and Uniqueness Theorem for the IVP).

The initial value problem:

$$
\begin{cases}\n y' = f(t, y) \\
 y(a) = \alpha\n\end{cases}
$$

has a unique solution $y(t)$ for $a \le t \le b$, if $f(t, y)$ is continuous on the domain, given by $R = \{a \le t \le b, \quad \infty < y < \infty\}$ and satisfies the following inequality:

$$
|f(t, y) - f(t, y^*)| \le L|y - y^*|,
$$

Whenever (t, y) and $(t, y^*) \in R$.

Definition. The condition $|f(t, y) - f(t, y^*)| \le L|y - y^*|$ is called the **Lipschitz Condition**. The number L is called a **Lipschitz Constant**.

Definition.

A set S is said to be convex if whenever (t_1, y_1) and (t_2, y_2) belong to S, the point $\Big($ (1 – λ)t₁ + 2t₂, (1 – λ)y₁ + λ y₂) also belongs to S for each λ when $0 \le \lambda \le 1$.

Simplification of the Lipschitz Condition for the Convex Domain

If the domain happens to be a **convex set**, then the condition of the above Theorem reduces to

$$
\left|\frac{\partial f}{\partial y}(t,y)\right| \le L \text{ for all } (t,y) \in R.
$$

Liptischitz Condition and Well-Posednes

Definition.

An IVP is said to be **well-posed** if a small perhubation in the data of the problem leads to only a small change in the solution.

Since numerical computation may very well introduce some perhubations to the problem, it is important that the problem that is to be solved is well-posed.

Fortunately, the Lipschitz condition is a sufficient condition for the IVP problem to be wellposed.

> **Theorem** (**Well-Posedness of the IVP problem**). If $f(t, y)$ Satisfies the Lipschitz Condition, then the IVP is well-posed.

2 The Euler Method

One of the simplest methods for solving the IVP is the classical Euler method.

The method is derived from the Taylor Series expansion of the function $y(t)$.

The function $y(t)$ has the following Taylor series expansion of order n at $t = t_{i+1}$:

$$
y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2!}y''(t_i) + \dots + \frac{(t_{i+1} - t_i)^n}{n!}y^{(n)}(t_i) + \frac{(t_{i+1} - t_i)^{n+1}}{(n+1)!}y^{n+1}(\xi_i)
$$
, where ξ_i is in (t_i, t_{i+1}) .

Substitute $h = t_{i+1} - t_i$. Then

Taylor Series Expansion under *n* of
$$
y(t)
$$

\n
$$
y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2!}y''(t_i) + \dots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i).
$$

For $n = 1$, this formula reduces to

$$
y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi).
$$

The term $=\frac{h^2}{2!}$ $\frac{d}{2!}y^{(2)}(\xi_i)$ is call the **remainder term**.

Neglecting the remainder term, we have

Euler's Method
\n
$$
y_{i+1} = y_i + hy'(t_i)
$$
\n
$$
i = 0, 1, 2, \dots, N - 1
$$
\n
$$
= y_i + h f(t_i, y_i),
$$

This formula is known as the **Euler method** and now can be used to approximate $y(t_{i+1})$.

Geometrical Interpretation

Example: $y' = t^2 + 5$, $2+5$, $0 \le t \le 1$.

$$
y(0) = 0, \ h = 0.25
$$

The points of subdivisions are: $t_0 = 0, t_1 = 0.25, t_2 = 0.50, t_3 = 0.75$ and $t_4 = 1$.

 $i = 0$: $t_1 = t_0 + h = 0.25$ $y_1 = y_0 + h f(t_0, y_0) = 0 + .25(5) = 1.25$ (exact value of $y(1)$: 1.2552) $i = 1$: $t_2 = t_1 + h = 0.50$ $y_2 = y_1 + h f(t_1, y_1)$ $= 1.25 + 0.25(t_1^2 + 5) = 1.25 + 0.25((0.25)^2 + 5)$ $= 2.5156$ (**exact value** of $y(2)$: 2.5417) $i = 2: t_3 = t_2 + h = 0.75$ $y_3 = y_2 + h f(t_2, y_2)$ $= 2.5156 + .25((.5)^{2} + 5) = 3.8281$ (exact value of $y(3) : 3.8906$)

Note: The exact values above are correct up to 4 decimal digits.

Example: $y' = t^2 + 5$, $0 \le t \le 2$,

$$
y(0) = 0, h = 0.5
$$

So, the points of subdivisions are: $t_0 = 0$, $t_1 = 0.5$, $t_2 = 1$, $t_3 = 1.5$, $t_4 = 2$.

We compute y_1, y_2, y_3 , and y_4 , which are, respectively, approximations to $y(0.5)$, $y(1)$, $y(1.5)$, and $y(2)$.

$$
i = 0: \t y_1 = y_0 + h f(t_0, y_0) = y(0) + h f(0, 0) = 0 + 0.5 \times 5 = 2.5
$$

\n
$$
(\text{exact Value} = 2.5417).
$$

\n
$$
i = 1: \t y_2 = y_1 + h f(t_1, y_1) = 2.5 + 0.5((0.5)^2 + 5) = 5.1250
$$

\n
$$
(\text{exact Value} = 5.3333).
$$

\n
$$
i = 2: \t y_3 = y_2 + h f(t_2, y_2) = 5.1250 + 0.5(t_2^2 + 5) = 5.1250 + 0.5(1.5) = 8.1250
$$

\n
$$
(\text{exact Value} = 8.6250)
$$

The Errors in Euler's Method

The approximations obtained by a numerical method to solve the IVP are usually subjected to three types of errors:

- **Local Truncation Error**
- **Global Truncation Error**
- **Round-off Error**

Definition. The **local truncation error** is the error made at a **single step** due to the truncation of the series used to solve the problem.

Definition. The **global truncation error** is the truncation error at any step, that is, the total of the accumulative single-step truncation errors at previous steps.

Recall that the Euler Method was obtained by truncating the Taylor series

$$
y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \cdots
$$

after two terms. Thus, in obtaining Euler's method, the first term neglected was $\frac{h^2}{2}$ $\frac{u}{2}y''(t)$.

So the **local error in Euler's method is:** $E_L = \frac{h^2}{2} y''(\xi_i)$, where ξ_i lies between t_i and t_{i+1} . In this case, we say **that the local error is of order** h^2 , **written as** $O(h^2)$ **.**

On the other hand, the *global truncation error* is of order $h: O(h)$, as can be seen from the following theorem.

Denote the global error at Step i by E_i , that is, $E_i = y(t_i) - y_i$.

Below we give a bound for this error assuming that certain properties of the derivatives of the solution are known. The proof of the result can be found in the book by Gear [Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Inc., (1971)]

Theorem: (Global Error Bound for the Euler Method)

Let $y(t)$ be the unique solution of the IVP: $y' = f(t, y); y(a) = \alpha$.

$$
a \le t \le b, -\infty < y < \infty
$$

Let L and M be two numbers such that

$$
\left|\frac{\partial f(t,y)}{\partial y}\right| \le L, \text{ and } ||y''(t)|| \le M \text{ in } [a,b].
$$

Then the global error E_i at $t = t_i$ satisfies

$$
|E_i| = |y(t_i) - y_i| \le \frac{hM}{2L} (e^{L(t_i - a)} - 1).
$$

Thus, The global error bound for Euler's method depends upon h**, whereas the** α local error depends upon h^2 .

Remark. Since the exact solution $y(t)$ of the IVP is not known, the above bound may not be of practical importance as far as knowing how large the error can be a priori. However, from this error bound, we can say that the *Euler method can be made to converge faster by* decreasing the step-size. Furthermore, if the equalities, L and M of the above theorem can be found, then we can determine what step-size will be needed to achieve a certain accuracy, as the following example shows.

Example:
$$
\frac{dy}{dt} = \frac{t^2 + y^2}{2}, y(0) = 0
$$

$$
0 \le t \le 1, -1 \le y(t) \le 1.
$$

Determine how small the step-size should be so that the error

does not exceed $\epsilon=10^{-4}.$

Since
$$
f(t, y) = \frac{t^2 + y^2}{2}
$$
, we have
\n $\frac{\partial f}{\partial y} = y$
\nThus, $\left| \frac{\partial f}{\partial y} \right| \le 1$ for all y, giving $L = 1$.

To find M , we compute the second-derivative of $y(t)$ as follows:

By implicit differentiation,
$$
y'' = \frac{dy}{dt} = f(t, y)
$$
 (Given)
\nBy implicit differentiation, $y'' = \frac{\partial f}{\partial t} + f \frac{\partial f}{\partial y}$
\n
$$
= t + \left(\frac{t^2 + y^2}{2}\right) y = t + \frac{y}{2}(t^2 + y^2)
$$
\nSo, $|y''(t)| = |t + \frac{y}{2}(t^2 + y^2)| \le 2$, for $1 \le y \le 1$.
\nThus, $M = 2$,
\nand $|E_i| = |y(t_i) - y_i| \le \frac{2h}{2!}(e^{(t_i)} - 1) = h(e^{(t_i)} - 1) = h(e - 1)$.

and
$$
|E_i| = |y(t_i) - y_i| \le \frac{2h}{2L}(e^{(t_i)} - 1) = h(e^{(t_i)} - 1) = h(e - 1).
$$

Now, for the error not to exceed 10^{-4} , we must have: $h(e-1) < 10^{-4}$ or $h < \frac{10^{-4}}{1}$ $e-1$ $\approx 5.8198 \times 10^{-5}$.

3 High-order Taylor Methods

Recall that the Taylor's series expansion of $y(t)$ of degree n is given by

$$
y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \dots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)
$$

Now,

(i)
$$
y'(t) = f(t, y(t))
$$
 (given).
\n(ii) $y''(t) = f'(t, y(t))$.
\n(iii) $y^{(i)}(t) = f^{(i-1)}(t, y(t)), i = 1, 2, ..., n$.

Thus,

$$
y(t_{i+1}) = y(t_i) + h f(t_i, y(t_i)) + \frac{h^2}{2} f'(t_i, y(t_i)) + \dots + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(t_i, y_i) + \frac{h^n}{n!} f^{(n-1)}(t_i, y(t_i)) + \frac{h^{n+1}}{(n+1)!} f^{(n-1)}(\xi_i, y(\xi_i))
$$

= $y(t_i) + h \left[f(t_i, y(t_i)) + \frac{h}{2} f'(t_i, y(t_i)) + \dots + \frac{h^{n-1}}{n!} f^{n-1}(t_i, y(t_i)) \right] + \text{ Remainder Term}$
Neglecting the remainder term the above formula can be written in compact form as follows:

 $y_{i+1} = y_i + hT_k(t_i, y_i), i = 0, 1, \cdots, N-1$, where $T_k(t_i, y_i)$ is defined by:

$$
T_k(t_i, y_1) = f(t_i, y_i) + \frac{h}{2}f'(t_i, y_i) + \dots + \frac{h^{k-1}}{k!}f^{(k-1)}(t_i, y_i)
$$

So, if we truncate the Taylor Series after $(k+1)$ terms and use the truncated series to obtain the approximating of y_{1+1} of $y(t_{i+1})$, we have the following **of k-th order Taylor's algorithm for the IVP**.

Note: With $k = 1$, the above formula for y_{i+1} , reduces to Euler's method.

Example:

$$
y' = y - t^2 + 1, \quad 0 \le t \le 2, \ y(0) = 0.5, h = 0 \cdot 2.
$$

\n
$$
f(t, y(t)) = y - t^2 + 1 \text{ (Given)}.
$$

\n
$$
f'(t, y(t)) = \frac{d}{dt}(y - t^2 + 1) = y' - 2t
$$

\n
$$
= y - t^2 + 1 - 2t
$$

\n
$$
f''(t, y(t)) = \frac{d}{dt}(y - t^2 + 1 - 2t) = y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1
$$

\nso,
\n
$$
y(0.2) \approx y_1 = y_0 + h f(t_0, y(t_0)) + \frac{h^2}{2} f'(t_0, y(t_0))
$$

\n
$$
= 0.5 + 0.2 \times 1.5 + \frac{(0.2)^2}{2}(0.5 + 1) = 2.2300 \text{check.}
$$

\n
$$
y(0.4) \approx y_2 = 1.215800
$$

4 Runge-Kutta Methods

- The Euler's method is the simplest to implement; however, even for a reasonable accuracy the step-size h needs to be very small.
- The difficulties with higher order Taylor's series methods are that the derivatives of higher orders of $f(t, y)$ need to be computed, which are very often difficult to compute/ needles to say that if $f(t, y)$ is not explicity known in many areas.

The Runge-Kutta methods aim at achieving the accuracy of higher order Taylor series methods without computing the higher order derivatives.

We first develop the simplest one: **The Runge-Kutta Methods of order 2.**

The Runge-Kutta Methods of order 2

Suppose that we want an expression of the approximation y_{i+1} in the form:

$$
y_{i+1} = y_i + \alpha_1 k_1 + \alpha_2 k_2, \tag{4.1}
$$

where
$$
k_1 = h f(t_i, y_i), \tag{4.2}
$$

and

$$
k_2 = h f(t_i + \alpha h, y_i + \beta k_1). \tag{4.3}
$$

The constants α_1 and α_2 and α and β are to be chosen so that the formula is as accurate as the Taylor's Series Method with $n = 1$.

To develop the method we need an important result from Calculus: **Taylor's series for function to two variables.**

Taylor's Theorem for Function of Two Variables

Let $f(t, y)$ and its partial derivatives of orders up to $(n + 1)$ are continuous in the domain $D = \{(t, y) | a \le t \le b, \ c \le y \le d\}.$

Then

$$
f(t, y) = f(t_0, y_0) + \left[(t - t_0) \frac{\partial f}{\partial t}(t_0, y_0) + (y - y_0) \frac{\partial f}{\partial y}(t_0, y_0) \right] + \cdots
$$

+
$$
\left[\frac{1}{n!} \sum_{h=0}^{n} {n \choose i} (t - t_0)^{h-i} (y - y_0)^i \frac{\partial^n f}{\partial t^{n-1} \partial y^i}(t_0, y_0) \right] + R_n(t, y),
$$

where $R_n(t, y)$ is the remainder after *n* terms and involves the partial derivative of order $n + 1$.

Using the above theorem with $n = 1$, we have

$$
f(t_i + \alpha h, y_i + \beta k_1) = f(t_i, y_i) + \alpha h \frac{\partial f}{\partial t}(t_i, y_i) + \beta k_1 \frac{\partial f}{\partial y}(t_i, y_i)
$$
(4.4)

From (4.4) and (4.3) , we obtain

$$
\frac{k_2}{h} = f(t_i, y_i) + \alpha h \frac{\partial f}{\partial t}(t_i, y_i) + \beta k_1 \frac{\partial f}{\partial y}(t_i, y_i).
$$
\n(4.5)

Again, substituting the value of k_1 from (4.2) and k_2 from (4.3) in (4.1) we get (after some rearrangment):

$$
y_{i+1} = y_i + \alpha_1 h f(t_i, y_i) + \alpha_1 h \left[f(t_i, y_i) + \alpha h \frac{\partial f}{\partial t}(t_i, y_i) + \beta h f(t_i, y_i) \frac{\partial f}{\partial y}(t_i, y_i) \right]
$$

=
$$
y_i + (\alpha_1 + \alpha_2) h f(t_i, y_i) + \alpha_2 h^2 \left[\alpha \frac{\partial f}{\partial t}(t_i, y_i) + \beta f(t_i, y_i) \frac{\partial f}{\partial y}(t_i, y_i) \right]
$$
(4.6)

Also, note that $y(t_{i+1}) = y(t_i) + hf(t_i, y_i) + \frac{h^2}{2}$ ∂f $\frac{\partial f}{\partial t}(t_i, y_i) + f(t_i, y_i)$ ∂f $\frac{\partial f}{\partial y}(t_i, y_i)\bigg) + \text{ higher}$ order terms.

So, neglecting the higher order terms, we can write

$$
y_{i+1} = y_i + h f(t_i, y_i) + \frac{h^2}{2} \left(\frac{\partial f}{\partial t}(t_i, y_i) + f \frac{\partial f}{\partial y}(t_i, y_i) \right).
$$
 (4.7)

If we want (4.6) and (4.7) to agree for numerical approximations, then we must have

- $\alpha_1 + \alpha_2 = 1$ (comparing the coefficients of $hf(t_i, y_i)$).
- $\alpha_2 \alpha = \frac{1}{2}$ (comparing the coefficients of $h^2 \frac{\partial f}{\partial t}(t_i, y_i)$.
- $\alpha_2 \beta = \frac{1}{2}$ (comparing the coefficents of $h^2 f(t_i, y_i)$ ∂f $\frac{\partial f}{\partial y}(t_i y_i)$.

Since the number of unknowns here exceeds the number of equations, there are infinitely many possible solutions. The simplest solution is:

$$
\alpha_1 = \alpha_2 = \frac{1}{2}, \ \alpha = \beta = 1
$$
.

With these choices we can generate y_{i+1} from y_i as follows. The process is known as the **Modified Euler's Method**.

Generating y_{i+1} from y_i in Modified Euler's Method

$$
y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2),
$$

where $k_1 = hf(t_i, y_i)$

$$
k_2 = hf(t_i + h, y_i + k_1).
$$

or

$$
y_{i+1} = y_i + \frac{h}{2} \bigg[f(t_i, y_i) + f(t_i + h, y_i + hf(t_i, y_i))
$$

Algorithm: The Modified Euler Method

1

Local Error in the Modified Euler Method

Since in deriving the modified Euler method, we neglected the terms involving h^3 and higher powers of h, the **local error for this method is** $O(h^3)$. Thus with the Modified Euler

method, we will be able to use larger step-size h **than the Euler Method to obtain the same accuracy**.

Example:
$$
y' = t + y
$$
, $y(0) = 1$
\n $h = 0.01, y_0 = y(0) = 1$.
\n $i = 0$: $y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$
\n $k_1 = hf(t_0, y_0) = 0.01(0 + 1) = 0.01$
\n $k_2 = hf(t_0 + h, y_0 + k_1) = 0.01 \times f(0.01, 1 + 0.01)$
\n $= 0.01 \times (0.01 + 1.01) = 0.01 \times 1.02 = 0.0102$
\n $y(0.01) \approx y_1 = 1 + \frac{1}{2}(0.01 + 0.0102) = 1.0101$

$$
\begin{array}{rcl}\ni & = 1: & y_2 & = y_1 + \frac{1}{2}(k_1 + k_2) \\
& k_1 & = hf(t_1, y_1) \\
& = 0.01 \times f(0.01, 1.0101) = 0.01 \times (0.01 + 1.0101) \\
& = 0.0102\n\end{array}
$$

$$
k_2 = hf(t_1 + h, y_1 + k_1)
$$

= 0.01 × f(0.02, 1.0101 + 0.0102) = 0.01 × (0.02 + 1.0203)
= -0.0104

 $y(0.02) \approx y_2 = 1.0101 + \frac{1}{2}$ 2 $(0.0102 + 0.0104) = 1.0204$

The Midpoint and Heun's Methods

In deriving the modified Euler's Method, we have considered only one set of possible values of $\alpha_1, \alpha_2, \alpha_1$ and β . We will now consider two more sets of values.

•
$$
\alpha = 0, \ \alpha_2 = 1, \ \alpha = \beta = \frac{1}{2}.
$$

This gives us the **Midpoint Method**.

The Midpoint Method
\n
$$
y_{i+1} = y_i + k_2
$$
\nwhere $k_1 = h f(t_i, y_i)$
\n
$$
k_2 = h f\left(t_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)
$$
\nor
\n
$$
y_{i+1} = y_i + h f\left(t_i + \frac{h}{2}, y_i + \frac{h}{2} f(t_i, y_i)\right), i = 0, 1, ..., N-1.
$$

•
$$
\alpha_1 = \frac{1}{4}, \ \beta_1 = \frac{3}{4}, \ \alpha = \beta = \frac{2}{3}
$$

Then we have **Heun's Method**.

Heun's Method
\n
$$
y_{i+1} = y_i + \frac{1}{4}k_1 + \frac{3}{4}k_2
$$
\nwhere $k_1 = h f(t_i, y_i)$
\n
$$
k_2 = h f\left(t_i + \frac{2}{3}h, y_i + \frac{2}{3}k_1\right)
$$
\nor\n
$$
y_{i+1} = y_i + \frac{h}{4} f(t_i, y_i) + \frac{3h}{4} f\left(t_i + \frac{2}{3}h, y_i + \frac{2h}{3} f(t_i, y_i)\right), i = 0, 1, \dots, N - 1
$$

Heun's Method and the **Modified Euler's Method** are classified as the **Runge-Kutta methods of order 2**.

The Runge-Kutta Method of order 4.

A method very widely used in practice is the Runge-Kutta method of order 4. It's derivation is complicated. We will just state the method, without proof.

The Local Truncation Error: The local truncation error of the Runge-Kutta Method of order 4 is $O(h^5)$.

Example:

$$
y' = t + y
$$
, $y(0) = 1$
 $h = 0.01$

Let's complete $y(0.01)$ using the Runge-Kutta Method of order 4.

 $i = 0$

$$
y(0.01) \approx y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)
$$

where $k_1 = hf(t_0, y_0) = 0.01f(0, 1) = 0.01 \times 1 = 0.01$.

$$
k_2 = h f(t_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}) = 0.01 f\left(\frac{0.01}{2}, 1 + \frac{0.01}{2}\right) = 0.01 \left[\frac{0.01}{2} + \frac{1 + 0.01}{2}\right] = 0.0101.
$$

\n
$$
k_3 = h f\left(t_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = h\left(t_0 + \frac{h}{2} + y_0 + \frac{k_2}{2}\right) = 0.0101005.
$$

\n
$$
k_4 = h f(t_0 + h, y_0 + k_3) = h(t_0 + h + y_0 + k_3) = 0.01020100
$$

\n
$$
y_1 = y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 1.010100334
$$

\nand so on.