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3.9 Inverse Trigonometric Functions

We introduced the six basic inverse trigonometric functions in Section 1.6, but focused 
there on the arcsine and arccosine functions. Here we complete the study of how all six 
inverse trigonometric functions are defined, graphed, and evaluated, and how their deriva-
tives are computed.

Inverses of tan x, cot x, sec x, and csc x

The graphs of these four basic inverse trigonometric functions are shown again in Figure 3.40. 
We obtain these graphs by reflecting the graphs of the restricted trigonometric functions 
(as discussed in Section 1.6) through the line y = x. Let’s take a closer look at the arctan-
gent, arccotangent, arcsecant, and arccosecant functions.

The arctangent of x is a radian angle whose tangent is x. The arccotangent of x is an angle 
whose cotangent is x, and so forth. The angles belong to the restricted domains of the tan-
gent, cotangent, secant, and cosecant functions.
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FIGURE 3.40 Graphs of the arctangent, arccotangent, arcsecant, and arccosecant functions.

DEFINITIONS

y = tan−1 x is the number in (-p>2, p>2) for which tan y = x.

y = cot−1 x is the number in (0, p) for which coty = x.

y = sec−1 x is the number in 30, p/2) ∪ (p/2, p4 for which sec y = x.

y = csc−1 x is the number in 3-p/2, 0) ∪ (0, p/24 for which csc y = x.

We use open or half-open intervals to avoid values for which the tangent, cotangent, 
secant, and cosecant functions are undefined. (See Figure 3.40.)

The graph of y = tan-1 x is symmetric about the origin because it is a branch of the 
graph x = tan y that is symmetric about the origin (Figure 3.40a). Algebraically this 
means that

tan-1 (-x) = - tan-1 x;

the arctangent is an odd function. The graph of y = cot-1 x has no such symmetry 
(Figure 3.40b). Notice from Figure 3.40a that the graph of the arctangent function has two 
horizontal asymptotes: one at y = p>2 and the other at y = -p>2.
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The inverses of the restricted forms of sec x and csc x are chosen to be the functions 
graphed in Figures 3.40c and 3.40d.

Caution There is no general agreement about how to define sec-1 x for negative values of 
x. We chose angles in the second quadrant between p>2 and p. This choice makes 
sec-1 x = cos-1 (1>x). It also makes sec-1 x an increasing function on each interval of its 
domain. Some tables choose sec-1 x to lie in 3-p, -p>2) for x 6 0 and some texts 
choose it to lie in 3p, 3p>2) (Figure 3.41). These choices simplify the formula for the 
derivative (our formula needs absolute value signs) but fail to satisfy the computational 
equation sec-1 x = cos-1 (1>x). From this, we can derive the identity

sec-1 x = cos-1 a1xb = p
2
- sin-1 a1xb (1)

by applying Equation (5) in Section 1.6.
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FIGURE 3.41 There are several logical 
choices for the left-hand branch of 
y = sec-1 x. With choice A,
sec-1 x = cos-1 (1>x), a useful identity 
employed by many calculators.
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FIGURE 3.42 The graph of y = sin-1 x
has vertical tangents at x = -1 and 
x = 1.

The angles come from the first and fourth quadrants because the range of tan-1 x is 
(-p>2, p>2).

The Derivative of y = sin−1u

We know that the function x = sin y is differentiable in the interval -p>2 6 y 6 p>2
and that its derivative, the cosine, is positive there. Theorem 3 in Section 3.8 therefore 
assures us that the inverse function y = sin-1 x is differentiable throughout the interval 
-1 6 x 6 1. We cannot expect it to be differentiable at x = 1 or x = -1 because the 
tangents to the graph are vertical at these points (see Figure 3.42).

EXAMPLE 1  The accompanying figures show two values of tan-1 x.
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We find the derivative of y = sin-1 x by applying Theorem 3 with ƒ(x) = sin x and 
ƒ -1(x) = sin-1 x:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x))

Theorem 3

= 1
cos (sin-1 x)

ƒ′(u) = cos u

= 1

21 - sin2 (sin-1 x)
cos u = 21 - sin2 u

= 1

21 - x2
. sin (sin-1 x) = x

If u is a differentiable function of x with 0 u 0 6 1, we apply the Chain Rule to get the 
general formula

EXAMPLE 2  Using the Chain Rule, we calculate the derivative

d
dx

(sin-1 x2) = 1

21 - (x2)2
# d

dx
(x2) = 2x

21 - x4
.

The Derivative of y = tan−1u

We find the derivative of y = tan-1 x by applying Theorem 3 with ƒ(x) = tan x and 
ƒ -1(x) = tan-1 x. Theorem 3 can be applied because the derivative of tan x is positive for 
-p>2 6 x 6 p>2:

(ƒ -1)′(x) = 1
ƒ′(ƒ -1(x) )

Theorem 3

= 1
sec2 (tan-1 x)

ƒ′(u) = sec2 u

= 1
1 + tan2 (tan-1 x)

sec2 u = 1 + tan2 u

= 1
1 + x2 . tan (tan-1 x) = x

The derivative is defined for all real numbers. If u is a differentiable function of x, we get 
the Chain Rule form:

d
dx

(sin-1 u) = 1

21 - u2

du
dx

, 0 u 0 6 1.

d
dx

(tan-1 u) = 1
1 + u2

du
dx

.

The Derivative of y = sec−1u

Since the derivative of sec x is positive for 0 6 x 6 p>2 and p>2 6 x 6 p, Theorem 3 
says that the inverse function y = sec-1 x is differentiable. Instead of applying the formula 
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in Theorem 3 directly, we find the derivative of y = sec-1 x, 0 x 0 7 1, using implicit dif-
ferentiation and the Chain Rule as follows:

y = sec-1 x

sec y = x Inverse function relationship

d
dx

(sec y) = d
dx

x Differentiate both sides.

sec y tan y
dy
dx

= 1 Chain Rule 

dy
dx

= 1
sec y tan y .

Since 0 x 0 7 1, y lies in 
(0, p>2) ∪ (p>2, p) and 
sec y tan y ≠ 0.

To express the result in terms of x, we use the relationships

sec y = x and tan y = {2sec2 y - 1 = {2x2 - 1

to get

dy
dx

= {
1

x2x2 - 1
.

Can we do anything about the {  sign? A glance at Figure 3.43 shows that the slope of the 
graph y = sec-1 x is always positive. Thus,

d
dx

sec-1 x = d + 1

x2x2 - 1
if x 7 1

- 1

x2x2 - 1
if x 6 -1.

With the absolute value symbol, we can write a single expression that eliminates the “{”
ambiguity:

d
dx

sec-1 x = 1
0 x 02x2 - 1

.

If u is a differentiable function of x with 0 u 0 7 1, we have the formula
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FIGURE 3.43 The slope of the curve 
y = sec-1 x is positive for both x 6 -1
and x 7 1.

d
dx

(sec-1 u) = 1
0 u 02u2 - 1

du
dx

, 0 u 0 7 1.

EXAMPLE 3  Using the Chain Rule and derivative of the arcsecant function, we find

d
dx

sec-1 (5x4) = 1
0 5x4 02(5x4)2 - 1

d
dx

(5x4)

= 1

5x4225x8 - 1
(20x3) 5x4 7 1 7 0

= 4

x225x8 - 1
.
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Derivatives of the Other Three Inverse Trigonometric Functions

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is an easier way, 
thanks to the following identities.

We saw the first of these identities in Equation (5) of Section 1.6. The others are 
derived in a similar way. It follows easily that the derivatives of the inverse cofunctions are 
the negatives of the derivatives of the corresponding inverse functions. For example, the 
derivative of cos-1 x is calculated as follows:

d
dx

(cos-1 x) = d
dx
ap

2
- sin-1 xb Identity

= - d
dx

(sin-1 x)

= - 1

21 - x2
. Derivative of arcsine

The derivatives of the inverse trigonometric functions are summarized in Table 3.1.

Inverse Function–Inverse Cofunction Identities

cos-1 x = p>2 - sin-1 x

cot-1 x = p>2 - tan-1 x

csc-1 x = p>2 - sec-1 x

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.
d(sin-1 u)

dx
= 1

21 - u2

du
dx

, 0 u 0 6 1

2.
d(cos-1 u)

dx
= - 1

21 - u2

du
dx

, 0 u 0 6 1

3.
d(tan-1 u)

dx
= 1

1 + u2
du
dx

4.
d(cot-1 u)

dx
= - 1

1 + u2
du
dx

5.
d(sec-1 u)

dx
= 1
0 u 02u2 - 1

du
dx

, 0 u 0 7 1

6.
d(csc-1 u)

dx
= - 1

0 u 02u2 - 1

du
dx

, 0 u 0 7 1
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Common Values
Use reference triangles in an appropriate quadrant, as in Example 1, to 
find the angles in Exercises 1–8.

1. a. tan-1 1 b. tan-11-232 c. tan-1 a 1

23
b

2. a. tan-1(-1) b. tan-123 c. tan-1 a -1

23
b

3. a. sin-1 a-1
2
b b. sin-1 a 1

22
b c. sin-1 a-23

2
b

4. a. sin-1 a1
2
b b. sin-1 a -1

22
b c. sin-1 a23

2
b

5. a. cos-1 a1
2
b b. cos-1 a -1

22
b c. cos-1 a23

2
b

6. a. csc-122 b. csc-1 a -2

23
b c. csc-1 2

7. a. sec-11-222 b. sec-1 a 2

23
b c. sec-1(-2)

8. a. cot-1 (-1) b. cot-11232 c. cot-1 a -1

23
b

Evaluations
Find the values in Exercises 9–12.

9. sin acos-1 a22
2
b b 10. sec acos-1 1

2
b

11. tan asin-1 a- 1
2
b b 12. cot asin-1 a- 23

2
b b

Limits
Find the limits in Exercises 13–20. (If in doubt, look at the function’s 
graph.)

13. lim
xS1-

sin-1 x 14. lim
xS-1+

cos-1 x

15. lim
xSq

tan-1 x 16. lim
xS-q

tan-1 x

17. lim
xSq

sec-1 x 18. lim
xS-q

sec-1 x

19. lim
xSq

csc-1 x 20. lim
xS-q

csc-1 x

Finding Derivatives
In Exercises 21–42, find the derivative of y with respect to the appro-
priate variable.

21. y = cos-1(x2) 22. y = cos-1(1>x)

23. y = sin-122 t 24. y = sin-1(1 - t)

25. y = sec-1(2s + 1) 26. y = sec-1 5s

27. y = csc-1 (x2 + 1), x 7 0

28. y = csc-1 x
2

29. y = sec-1 1
t , 0 6 t 6 1 30. y = sin-1 3

t2

31. y = cot-12t 32. y = cot-12t - 1

33. y = ln (tan-1 x) 34. y = tan-1(ln x)

35. y = csc-1 (et) 36. y = cos-1(e-t)

37. y = s21 - s2 + cos-1 s 38. y = 2s2 - 1 - sec-1 s

39. y = tan-12x2 - 1 + csc-1 x, x 7 1

40. y = cot-1 1
x - tan-1 x 41. y = x sin-1 x + 21 - x2

42. y = ln (x2 + 4) - x tan-1 ax
2
b

Theory and Examples
43. You are sitting in a classroom next to the wall looking at the 

blackboard at the front of the room. The blackboard is 12 ft long 
and starts 3 ft from the wall you are sitting next to. Show that 
your viewing angle is

a = cot-1 x
15

- cot-1 x
3

  if you are x ft from the front wall.

B
la

ck
bo

ar
d

12′

3′
Wall

You
a

x

44. Find the angle a.

65°

21

50
a

b

45. Here is an informal proof that tan-1 1 + tan-1 2 + tan-1 3 = p.
Explain what is going on.

Exercises 3.9
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46. Two derivations of the identity sec−1(−x) = P − sec−1 x

a. (Geometric) Here is a pictorial proof that sec-1(-x) =
p - sec-1 x. See if you can tell what is going on.

x

y

0

p

1 x−1−x

y = sec–1x

p
2

b. (Algebraic) Derive the identity sec-1(-x) = p - sec-1 x by 
combining the following two equations from the text:

cos-1(-x) = p - cos-1 x Eq. (4), Section 1.6

sec-1 x = cos-1(1>x) Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which 
are not? Give reasons for your answers.

47. a. tan-1 2 b. cos-1 2

48. a. csc-1 (1>2) b. csc-1 2

49. a. sec-1 0 b. sin-122

50. a. cot-1 (-1>2) b. cos-1(-5)

51. Use the identity

csc-1 u = p
2

- sec-1 u

  to derive the formula for the derivative of csc-1 u in Table 3.1 
from the formula for the derivative of sec-1 u.

52. Derive the formula

dy
dx

= 1
1 + x2

  for the derivative of y = tan-1 x by differentiating both sides of 
the equivalent equation tan y = x.

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

d
dx

sec-1 x = 1

0 x 02x2 - 1
, 0 x 0 7 1.

54. Use the identity

cot-1 u = p
2

- tan-1 u

  to derive the formula for the derivative of cot-1 u in Table 3.1 
from the formula for the derivative of tan-1 u.

55. What is special about the functions

ƒ(x) = sin-1 x - 1
x + 1

, x Ú 0, and g(x) = 2 tan-1 1x?

  Explain.

56. What is special about the functions

ƒ(x) = sin-1 1

2x2 + 1
and g(x) = tan-1 1

x?

  Explain.

57. Find the values of

a. sec-1 1.5 b. csc-1 (-1.5) c. cot-1 2

58. Find the values of

a. sec-1(-3) b. csc-1 1.7 c. cot-1 (-2)

In Exercises 59–61, find the domain and range of each composite 
function. Then graph the composites on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. y = tan-1(tan x) b. y = tan (tan-1 x)

60. a. y = sin-1(sin x) b. y = sin (sin-1 x)

61. a. y = cos-1(cos x) b. y = cos (cos-1 x)

Use your graphing utility for Exercises 62–66.

62. Graph y = sec (sec-1 x) = sec (cos-1(1>x)). Explain what you 
see.

63. Newton’s serpentine Graph Newton’s serpentine, y = 4x>(x2 + 1).
Then graph y = 2 sin (2 tan-1 x) in the same graphing window. 
What do you see? Explain.

64. Graph the rational function y = (2 - x2)>x2. Then graph y =
cos (2 sec-1 x) in the same graphing window. What do you see? 
Explain.

65. Graph ƒ(x) = sin-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

66. Graph ƒ(x) = tan-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

T

T

T

T

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes 
when it is known how the rate of some other related variable (or perhaps several variables) 
changes. The problem of finding a rate of change from other known rates of change is 
called a related rates problem.
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