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3.6 The Chain Rule

How do we differentiate F(x) = sin (x2 - 4)? This function is the composite ƒ ∘ g of two 
functions y = ƒ(u) = sin u and u = g(x) = x2 - 4 that we know how to differentiate. 
The answer, given by the Chain Rule, says that the derivative is the product of the deriva-
tives of ƒ and g. We develop the rule in this section.

Derivative of a Composite Function

The function y = 3
2

x = 1
2

(3x) is the composite of the functions y = 1
2

u and u = 3x.

We have

dy
dx

= 3
2

,
dy
du

= 1
2

, and
du
dx

= 3.

Since
3
2

= 1
2
# 3, we see in this case that

dy
dx

=
dy
du

# du
dx

.

If we think of the derivative as a rate of change, our intuition allows us to see that this rela-
tionship is reasonable. If y = ƒ(u) changes half as fast as u and u = g(x) changes three 
times as fast as x, then we expect y to change 3>2 times as fast as x. This effect is much 
like that of a multiple gear train (Figure 3.25). Let’s look at another example.

EXAMPLE 1  The function

y = (3x2 + 1)2

is the composite of y = ƒ(u) = u2 and u = g(x) = 3x2 + 1. Calculating derivatives, we 
see that

dy
du

# du
dx

= 2u # 6x

= 2(3x2 + 1) # 6x Substitute for u

= 36x3 + 12x.

Calculating the derivative from the expanded formula (3x2 + 1)2 = 9x4 + 6x2 + 1 gives 
the same result:

dy
dx

= d
dx

(9x4 + 6x2 + 1)

= 36x3 + 12x.

The derivative of the composite function ƒ(g(x)) at x is the derivative of ƒ at g(x)
times the derivative of g at x. This is known as the Chain Rule (Figure 3.26). 
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1

C: y turns B: u turns A: x turns

FIGURE 3.25 When gear A makes 
x turns, gear B makes u turns and gear 
C makes y turns. By comparing cir-
cumferences or counting teeth, we see 
that y = u>2 (C turns one-half turn 
for each B turn) and u = 3x (B turns 
three times for A’s one), so y = 3x>2.
Thus, dy>dx = 3>2 = (1>2)(3) =
(dy>du)(du>dx).

x

g f

Composite f ˚ g

Rate of change at
x is f ′(g(x)) · g′(x).

Rate of change
at x is g′(x).

Rate of change
at g(x) is f ′(g(x)).

u = g(x) y = f (u) = f (g(x))

FIGURE 3.26 Rates of change multiply: The derivative of ƒ ∘ g at x is the 
derivative of ƒ at g(x) times the derivative of g at x.



A Proof of One Case of the Chain Rule:

Let ∆u be the change in u when x changes by ∆x, so that

∆u = g(x + ∆x) - g(x).

Then the corresponding change in y is

∆y = ƒ(u + ∆u) - ƒ(u).

If ∆u ≠ 0, we can write the fraction ∆y>∆x as the product

∆y
∆x =

∆y
∆u

# ∆u
∆x (1)

and take the limit as ∆xS 0:

dy
dx

= lim
∆xS0

∆y
∆x

= lim
∆xS0

∆y
∆u

# ∆u
∆x

= lim
∆xS0

∆y
∆u

# lim
∆xS0

∆u
∆x

= lim
∆uS0

∆y
∆u

# lim
∆xS0

∆u
∆x

(Note that ∆uS 0 as ∆xS 0
since g is continuous.)

=
dy
du

# du
dx

.

The problem with this argument is that if the function g(x) oscillates rapidly near x, then 
∆u can be zero even when ∆x ≠ 0, so the cancelation of ∆u in Equation (1) would be 
invalid. A complete proof requires a different approach that avoids this problem, and we 
give one such proof in Section 3.11.

EXAMPLE 2  An object moves along the x-axis so that its position at any time t Ú 0
is given by x(t) = cos (t2 + 1). Find the velocity of the object as a function of t.

Solution We know that the velocity is dx>dt. In this instance, x is a composite function: 
x = cos(u) and u = t2 + 1. We have

dx
du

= -sin(u) x = cos(u)

du
dt

= 2t. u = t2 + 1

THEOREM 2—The Chain Rule If ƒ(u) is differentiable at the point u = g(x)
and g(x) is differentiable at x, then the composite function (ƒ ∘ g) (x) = ƒ(g(x)) is 
differentiable at x, and

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x).
In Leibniz’s notation, if y = ƒ(u) and u = g(x), then

dy
dx

=
dy
du

# du
dx

,

where dy>du is evaluated at u = g(x).
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By the Chain Rule,

dx
dt

= dx
du

# du
dt

= -sin (u) # 2t dx
du

evaluated at u

= -sin (t2 + 1) # 2t

= -2t sin (t2 + 1).

“Outside-Inside” Rule

A difficulty with the Leibniz notation is that it doesn’t state specifically where the deriva-
tives in the Chain Rule are supposed to be evaluated. So it sometimes helps to think about 
the Chain Rule using functional notation. If y = ƒ(g(x)), then

dy
dx

= ƒ′(g(x)) # g′(x).

In words, differentiate the “outside” function ƒ and evaluate it at the “inside” function g(x)
left alone; then multiply by the derivative of the “inside function.”

EXAMPLE 3 Differentiate sin (x2 + ex)  with respect to x.

Solution We apply the Chain Rule directly and find

d
dx

sin (x2 + ex) = cos (x2 + ex) # (2x + ex).
(1)1* (1)1* (1)1*

inside inside derivative of
left alone the inside

EXAMPLE 4 Differentiate y = ecosx.

Solution Here the inside function is u = g(x) = cos x and the outside function is the 
exponential function ƒ(x) = ex. Applying the Chain Rule, we get

dy
dx

= d
dx

(ecos x) = ecos x d
dx

(cos x) = ecos x(-sin x) = -ecos x sin x.

Generalizing Example 4, we see that the Chain Rule gives the formula

d
dx

eu = eu du
dx

.

For example,

d
dx

(ekx) = ekx # d
dx

(kx) = kekx, for any constant k

and

d
dx
1ex22 = ex2 # d

dx
(x2) = 2xex2

.

Repeated Use of the Chain Rule

We sometimes have to use the Chain Rule two or more times to find a derivative.

Ways to Write the Chain Rule

(ƒ ∘ g)′(x) = ƒ′(g(x)) # g′(x)

dy
dx

=
dy
du

# du
dx

dy
dx

= ƒ′(g(x)) # g′(x)

d
dx

ƒ(u) = ƒ′(u)
du
dx
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EXAMPLE 5  Find the derivative of g(t) = tan (5 - sin 2t).

Solution Notice here that the tangent is a function of 5 - sin 2t, whereas the sine is a 
function of 2t, which is itself a function of t. Therefore, by the Chain Rule,

g′(t) = d
dt

(tan (5 - sin 2t))

= sec2(5 - sin 2t) # d
dt

(5 - sin 2t)
Derivative of tan u with 
u = 5 - sin 2t

= sec2(5 - sin 2t) # a0 - cos 2t # d
dt

(2t)b Derivative of 5 - sin u
with u = 2t

= sec2(5 - sin 2t) # (-cos 2t) # 2
= -2(cos 2t) sec2(5 - sin 2t).

The Chain Rule with Powers of a Function

If ƒ is a differentiable function of u and if u is a differentiable function of x, then substitut-
ing y = ƒ(u) into the Chain Rule formula

dy
dx

=
dy
du

# du
dx

leads to the formula

d
dx

ƒ(u) = ƒ′(u)
du
dx

.

If n is any real number and ƒ is a power function, ƒ(u) = un, the Power Rule tells us 
that ƒ′(u) = nun-1. If u is a differentiable function of x, then we can use the Chain Rule to 
extend this to the Power Chain Rule:

d
dx

(un) = nun-1 du
dx

. d
du

(un) = nun-1

EXAMPLE 6  The Power Chain Rule simplifies computing the derivative of a power 
of an expression.

(a) d
dx

(5x3 - x4)7 = 7(5x3 - x4)6 d
dx

(5x3 - x4)
Power Chain Rule with 
u = 5x3 - x4, n = 7

= 7(5x3 - x4)6(5 # 3x2 - 4x3)
= 7(5x3 - x4)6(15x2 - 4x3)

(b) d
dx
a 1

3x - 2
b = d

dx
(3x - 2)-1

= -1(3x - 2)-2 d
dx

(3x - 2)
Power Chain Rule with 
u = 3x - 2, n = -1

= -1(3x - 2)-2(3)

= - 3
(3x - 2)2

  In part (b) we could also find the derivative with the Derivative Quotient Rule.

(c) d
dx

(sin5 x) = 5 sin4 x # d
dx

sin x
Power Chain Rule with u = sin x, n = 5,
because sinn x means (sin x)n, n ≠ -1.

= 5 sin4 x cos x

HISTORICAL BIOGRAPHY

Johann Bernoulli
(1667–1748)
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(d) d
dx
1e23x+12 = e23x+1 # d

dx
123x + 12

= e23x+1 # 1
2

(3x + 1)-1>2 # 3 Power Chain Rule with u = 3x + 1, n = 1>2

= 3

223x + 1
e23x+1

EXAMPLE 7  In Section 3.2, we saw that the absolute value function y = 0 x 0  is not 
differentiable at x = 0. However, the function is differentiable at all other real numbers, 
as we now show. Since 0 x 0 = 2x2, we can derive the following formula:

d
dx

( 0 x 0 ) = d
dx
2x2

= 1

22x2
# d
dx

(x2)
Power Chain Rule with 
u = x2, n = 1>2, x ≠ 0

= 1
2 0 x 0 # 2x 2x2 = 0 x 0

= x0 x 0 , x ≠ 0.

EXAMPLE 8  Show that the slope of every line tangent to the curve y = 1>(1 - 2x)3

is positive.

Solution We find the derivative:

dy
dx

= d
dx

(1 - 2x)-3

= -3(1 - 2x)-4 # d
dx

(1 - 2x) Power Chain Rule with u = (1 - 2x), n = -3

= -3(1 - 2x)-4 # (-2)

= 6
(1 - 2x)4 .

At any point (x, y) on the curve, the coordinate x is not 1>2 and the slope of the tangent 
line is

dy
dx

= 6
(1 - 2x)4 ,

which is the quotient of two positive numbers.

EXAMPLE 9  The formulas for the derivatives of both sin x and cos x were obtained 
under the assumption that x is measured in radians, not degrees. The Chain Rule gives us 
new insight into the difference between the two. Since 180° = p radians, x° = px>180
radians where x° is the size of the angle measured in degrees.

By the Chain Rule,

d
dx

sin (x°) = d
dx

sin a px
180
b = p

180
cos a px

180
b = p

180
cos (x°).

See Figure 3.27. Similarly, the derivative of cos (x°) is -(p>180) sin (x°).
The factor p>180 would compound with repeated differentiation, showing an advan-

tage for the use of radian measure in computations.

Derivative of the 
Absolute Value Function

d
dx

( 0 x 0 ) = x0 x 0 , x ≠ 0

= e 1, x 7 0

-1, x 6 0
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x

y

1

180
y = sin x

y = sin(x°) = sin px
180

FIGURE 3.27 The function sin (x°) oscillates only p>180 times as often as sin x
oscillates. Its maximum slope is p>180 at x = 0 (Example 9).

Derivative Calculations
In Exercises 1–8, given y = ƒ(u) and u = g(x), find dy>dx =
ƒ′(g(x))g′(x).

1. y = 6u - 9, u = (1>2)x4 2. y = 2u3, u = 8x - 1

3. y = sin u, u = 3x + 1 4. y = cos u, u = e-x

5. y = 2u , u = sin x 6. y = sin u, u = x - cos x

7. y = tan u, u = px2 8. y = -sec u, u = 1
x + 7x

In Exercises 9–22, write the function in the form y = ƒ(u) and 
u = g(x). Then find dy>dx as a function of x.

9. y = (2x + 1)5 10. y = (4 - 3x)9

11. y = a1 - x
7
b-7

12. y = a2x
2

- 1b-10

13. y = ax2

8
+ x - 1

xb
4

14. y = 23x2 - 4x + 6

15. y = sec (tan x) 16. y = cot ap - 1
xb

17. y = tan3 x 18. y = 5 cos-4 x

19. y = e-5x 20. y = e2x>3
21. y = e5-7x 22. y = e142x+x22
Find the derivatives of the functions in Exercises 23–50.

23. p = 23 - t 24. q = 23 2r - r2

25. s = 4
3p

sin 3t + 4
5p

cos 5t 26. s = sin a3pt
2
b + cos a3pt

2
b

27. r = (csc u + cot u)-1 28. r = 6 (sec u - tan u)3>2

29. y = x2 sin4 x + x cos-2 x 30. y = 1
x sin-5 x - x

3
cos3 x

31. y = 1
18

(3x - 2)6 + a4 - 1
2x2b

-1

32. y = (5 - 2x)-3 + 1
8
a2x + 1b4

33. y = (4x + 3)4(x + 1)-3 34. y = (2x - 5)-1(x2 - 5x)6

35. y = xe-x + ex3
36. y = (1 + 2x)e-2x

37. y = (x2 - 2x + 2)e5x>2 38. y = (9x2 - 6x + 2)ex3

39. h(x) = x tan121x2 + 7 40. k(x) = x2 sec a1xb
41. ƒ(x) = 27 + x sec x 42. g(x) = tan 3x

(x + 7)4

43. ƒ(u) = a sin u
1 + cos u

b2

44. g(t) = a1 + sin 3t
3 - 2t

b-1

45. r = sin (u2) cos (2u) 46. r = sec2u tan a1
u
b

47. q = sin a t

2t + 1
b 48. q = cotasin t

t b
49. y = cos1e-u22 50. y = u3e-2ucos 5u

In Exercises 51–70, find dy>dt.

51. y = sin2 (pt - 2) 52. y = sec2pt

53. y = (1 + cos 2t)-4 54. y = (1 + cot (t>2))-2

55. y = (t tan t)10 56. y = (t-3>4 sin t)4>3
57. y = ecos2 (pt-1) 58. y = (esin (t>2))3

59. y = a t2

t3 - 4t
b3

60. y = a3t - 4
5t + 2

b-5

61. y = sin (cos (2t - 5)) 62. y = cos a5 sin a t
3
b b

63. y = a1 + tan4 a t
12
b b3

64. y = 1
6
11 + cos2 (7t)23

65. y = 21 + cos (t2) 66. y = 4 sin121 + 1t2
67. y = tan2 (sin3 t) 68. y = cos4 (sec2 3t)

69. y = 3t (2t2 - 5)4 70. y = 43t + 32 + 21 - t

Second Derivatives
Find y″ in Exercises 71–78.

71. y = a1 + 1
xb

3

72. y = 11 - 1x2-1

73. y = 1
9

cot (3x - 1) 74. y = 9 tan ax
3
b

75. y = x (2x + 1)4 76. y = x2 (x3 - 1)5

77. y = ex2 + 5x 78. y = sin (x2ex)

Exercises 3.6
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Finding Derivative Values
In Exercises 79–84, find the value of (ƒ ∘ g)′ at the given value of x.

79. ƒ(u) = u5 + 1, u = g(x) = 1x, x = 1

80. ƒ(u) = 1 - 1
u , u = g(x) = 1

1 - x
, x = -1

81. ƒ(u) = cot
pu
10

, u = g(x) = 51x, x = 1

82. ƒ(u) = u + 1
cos2 u

, u = g(x) = px, x = 1>4
83. ƒ(u) = 2u

u2 + 1
, u = g(x) = 10x2 + x + 1, x = 0

84. ƒ(u) = au - 1
u + 1

b2

, u = g(x) = 1
x2 - 1, x = -1

85. Assume that ƒ′(3) = -1, g′(2) = 5, g(2) = 3, and y = ƒ(g(x)).
What is y′ at x = 2?

86. If r = sin (ƒ(t)), ƒ(0) = p>3, and ƒ′(0) = 4, then what is dr>dt
at t = 0?

87. Suppose that functions ƒ and g and their derivatives with respect 
to x have the following values at x = 2 and x = 3.

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 2ƒ(x), x = 2 b. ƒ(x) + g(x), x = 3

c. ƒ(x) # g(x), x = 3 d. ƒ(x)>g(x), x = 2

e. ƒ(g(x)), x = 2 f. 2ƒ(x), x = 2

g. 1>g2(x), x = 3 h. 2ƒ2(x) + g2(x), x = 2

88. Suppose that the functions ƒ and g and their derivatives with 
respect to x have the following values at x = 0 and x = 1.

  Find the derivatives with respect to x of the following combina-
tions at the given value of x.

a. 5ƒ(x) - g(x), x = 1 b. ƒ(x)g3(x), x = 0

c.
ƒ(x)

g(x) + 1
, x = 1 d. ƒ(g(x)), x = 0

e. g(ƒ(x)), x = 0 f. (x11 + ƒ(x))-2, x = 1

g. ƒ(x + g(x)), x = 0

89. Find ds>dt when u = 3p>2 if s = cosu and du>dt = 5.

90. Find dy>dt when x = 1 if y = x2 + 7x - 5 and dx>dt = 1>3.

Theory and Examples
What happens if you can write a function as a composite in different 
ways? Do you get the same derivative each time? The Chain Rule 
says you should. Try it with the functions in Exercises 91 and 92.

91. Find dy>dx if y = x by using the Chain Rule with y as a comps-
ite of

a. y = (u>5) + 7 and u = 5x - 35

b. y = 1 + (1>u) and u = 1>(x - 1).

92. Find dy>dx if y = x3>2 by using the Chain Rule with y as a com-
posite of

a. y = u3 and u = 1x

b. y = 1u and u = x3.

93. Find the tangent to y = ((x - 1)>(x + 1))2 at x = 0.

94. Find the tangent to y = 2x2 - x + 7 at x = 2.

95. a.  Find the tangent to the curve y = 2 tan (px>4) at x = 1.

b. Slopes on a tangent curve What is the smallest value the 
slope of the curve can ever have on the interval 
-2 6 x 6 2? Give reasons for your answer.

96. Slopes on sine curves

a. Find equations for the tangents to the curves y = sin 2x and 
y = -sin (x>2) at the origin. Is there anything special about 
how the tangents are related? Give reasons for your answer.

b. Can anything be said about the tangents to the curves 
y = sin mx and y = -sin (x>m) at the origin 
(m a constant ≠ 0)? Give reasons for your answer.

c. For a given m, what are the largest values the slopes of the 
curves y = sin mx and y = -sin (x>m) can ever have? Give 
reasons for your answer.

d. The function y = sin x completes one period on the interval 
30, 2p4 , the function y = sin 2x completes two periods, the 
function y = sin (x>2) completes half a period, and so on. Is 
there any relation between the number of periods y = sin mx
completes on 30, 2p4  and the slope of the curve y = sin mx
at the origin? Give reasons for your answer.

97. Running machinery too fast Suppose that a piston is moving 
straight up and down and that its position at time t sec is

s = A cos (2pbt),

  with A and b positive. The value of A is the amplitude of the 
motion, and b is the frequency (number of times the piston moves 
up and down each second). What effect does doubling the fre-
quency have on the piston’s velocity, acceleration, and jerk? 
(Once you find out, you will know why some machinery breaks 
when you run it too fast.)

98. Temperatures in Fairbanks, Alaska The graph in the accom-
panying figure shows the average Fahrenheit temperature in 
Fairbanks, Alaska, during a typical 365-day year. The equation 
that approximates the temperature on day x is

y = 37 sin c 2p
365

(x - 101) d + 25

  and is graphed in the accompanying figure.

x ƒ(x) g(x) ƒ′(x) g′(x)

2 8 2 1>3 -3
3 3 -4 2p 5

x ƒ(x) g(x) ƒ′(x) g′(x)

0 1 1 5 1>3
1 3 -4 -1>3 -8>3
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a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increas-
ing when it is increasing at its fastest?
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99. Particle motion The position of a particle moving along a 
coordinate line is s = 21 + 4t, with s in meters and t in sec-
onds. Find the particle’s velocity and acceleration at t = 6 sec.

100. Constant acceleration Suppose that the velocity of a falling 
body is y = k1s m>sec (k a constant) at the instant the body 
has fallen s m from its starting point. Show that the body’s 
acceleration is constant.

101. Falling meteorite The velocity of a heavy meteorite entering 
Earth’s atmosphere is inversely proportional to 2s when it is 
s km from Earth’s center. Show that the meteorite’s acceleration 
is inversely proportional to s2.

102. Particle acceleration A particle moves along the x-axis with 
velocity dx>dt = ƒ(x). Show that the particle’s acceleration is 
ƒ(x)ƒ′(x).

103. Temperature and the period of a pendulum For oscillations 
of small amplitude (short swings), we may safely model the rela-
tionship between the period T and the length L of a simple pen-
dulum with the equation

T = 2pA
L
g ,

where g is the constant acceleration of gravity at the pendulum’s 
location. If we measure g in centimeters per second squared, we 
measure L in centimeters and T in seconds. If the pendulum is 
made of metal, its length will vary with temperature, either 
increasing or decreasing at a rate that is roughly proportional to 
L. In symbols, with u being temperature and k the proportional-
ity constant,

dL
du

= kL.

Assuming this to be the case, show that the rate at which the 
period changes with respect to temperature is kT>2.

104. Chain Rule Suppose that ƒ(x) = x2 and g(x) = � x � . Then the 
composites

(ƒ ∘ g)(x) = � x �2 = x2 and (g ∘ ƒ)(x) = � x2 � = x2

  are both differentiable at x = 0 even though g itself is not dif-
ferentiable at x = 0. Does this contradict the Chain Rule? 
Explain.

105. The derivative of sin 2x Graph the function y = 2 cos 2x for 
-2 … x … 3.5. Then, on the same screen, graph

y =
sin 2(x + h) - sin 2x

h

  for h = 1.0, 0.5, and 0.2. Experiment with other values of h,
including negative values. What do you see happening as 
h S 0? Explain this behavior.

106. The derivative of cos (x2) Graph y = -2x sin (x2) for -2 …
x … 3. Then, on the same screen, graph

y =
cos ((x + h)2) - cos (x2)

h

  for h = 1.0, 0.7, and 0.3. Experiment with other values of h.
What do you see happening as h S 0? Explain this behavior.

Using the Chain Rule, show that the Power Rule (d>dx)xn = nxn-1

holds for the functions xn in Exercises 107 and 108.

107. x1>4 = 21x 108. x3>4 = 2x1x

COMPUTER EXPLORATIONS
Trigonometric Polynomials
109. As the accompanying figure shows, the trigonometric “polyno-

mial”

s = ƒ(t) = 0.78540 - 0.63662 cos 2t - 0.07074 cos 6t

-  0.02546cos 10t - 0.01299cos 14t

  gives a good approximation of the sawtooth function s = g(t)
on the interval 3-p, p4 . How well does the derivative of ƒ 
approximate the derivative of g at the points where dg>dt is 
defined? To find out, carry out the following steps.

a. Graph dg>dt (where defined) over 3-p, p4 .
  b. Find dƒ>dt.

c. Graph dƒ>dt. Where does the approximation of dg>dt by 
dƒ>dt seem to be best? Least good? Approximations by trig-
onometric polynomials are important in the theories of heat 
and oscillation, but we must not expect too much of them, as 
we see in the next exercise.

t

s

0−p p

2
p

s = g(t)

s = f (t)

110. (Continuation of Exercise 109.) In Exercise 109, the trigonomet-
ric polynomial ƒ(t) that approximated the sawtooth function g(t)
on 3-p, p4  had a derivative that approximated the derivative 
of the sawtooth function. It is possible, however, for a trigono-
metric polynomial to approximate a function in a reasonable 
way without its derivative approximating the function’s deriva-
tive at all well. As a case in point, the trigonometric “polynomial”

s = h(t) = 1.2732 sin 2t + 0.4244 sin 6t + 0.25465 sin 10t

+ 0.18189 sin 14t + 0.14147 sin 18t

T
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  graphed in the accompanying figure approximates the step func-
tion s = k(t) shown there. Yet the derivative of h is nothing like 
the derivative of k.

1

t

s

0 p
2

p−p p
2

−

−1

s = k(t)

s = h(t)

  a. Graph dk>dt (where defined) over 3-p, p4 .
  b. Find dh>dt.

  c. Graph dh>dt to see how badly the graph fits the graph of 
dk>dt. Comment on what you see.

3.7 Implicit Differentiation

Most of the functions we have dealt with so far have been described by an equation of the 
form y = ƒ(x) that expresses y explicitly in terms of the variable x. We have learned rules 
for differentiating functions defined in this way. Another situation occurs when we encoun-
ter equations like

x3 + y3 - 9xy = 0, y2 - x = 0, or x2 + y2 - 25 = 0.

(See Figures 3.28, 3.29, and 3.30.) These equations define an implicit relation between the 
variables x and y. In some cases we may be able to solve such an equation for y as an 
explicit function (or even several functions) of x. When we cannot put an equation 
F(x, y) = 0 in the form y = ƒ(x) to differentiate it in the usual way, we may still be able 
to find dy>dx by implicit differentiation. This section describes the technique.

Implicitly Defined Functions

We begin with examples involving familiar equations that we can solve for y as a function of 
x to calculate dy>dx in the usual way. Then we differentiate the equations implicitly, and find 
the derivative to compare the two methods. Following the examples, we summarize the steps 
involved in the new method. In the examples and exercises, it is always assumed that the 
given equation determines y implicitly as a differentiable function of x so that dy>dx exists.

EXAMPLE 1 Find dy>dx if y2 = x.

Solution The equation y2 = x defines two differentiable functions of x that we can actu-
ally find, namely y1 = 2x and y2 = -2x (Figure 3.29). We know how to calculate the 
derivative of each of these for x 7 0:

dy1

dx
= 1

21x
and

dy2

dx
= - 1

21x
.

But suppose that we knew only that the equation y2 = x defined y as one or more differen-
tiable functions of x for x 7 0 without knowing exactly what these functions were. Could 
we still find dy>dx?

The answer is yes. To find dy>dx, we simply differentiate both sides of the equation 
y2 = x with respect to x, treating y = ƒ(x) as a differentiable function of x:

y2 = x The Chain Rule gives 
d
dx

(y2) =

d
dx
3ƒ(x)42 = 2ƒ(x)ƒ′(x) = 2y

dy

dx
.2y

dy
dx

= 1

dy
dx

= 1
2y

.

x

y

0 5

5

A

x3 + y3 − 9xy = 0

y = f1(x)
(x0, y1)

y = f2(x)

y = f3(x)

(x0, y2)

(x0, y3)

x0

FIGURE 3.28 The curve 
x3 + y3 - 9xy = 0 is not the graph of any 
one function of x. The curve can, however, be 
divided into separate arcs that are the graphs 
of functions of x. This particular curve, called 
a folium, dates to Descartes in 1638.
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