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Second Order
Linear Equations .

Linear equations of second order are of crucial importance in the study of differential
equations for two main reasons. The first is that linear equations have a rich theoretical
structure that underlies a number of systematic methods of solution. Further, a substan-
tial portion of this structure and these methods are understandable at a fairly elementary
mathematical level. In order to present the key ideas in the simplest possible context,
we describe them in this chapter for second order equations. Another reason to study
second order linear equations is that they are vital to any serious investigation of the
classical areas of mathematical physics. One cannot go very far in the development of
fluid mechanics, heat conduction, wave motion, or electromagnetic phenomena without
finding it necessary to solve second order linear differential equations. As an example,
we discuss the oscillations of some basic mechanical and electrical systems at the end
of the chapter.

omogeneous Equations with Constant Coefficients

A second order ordinary differential equation has the form

d’y dy
— t' ’ T ,
dr ( y zlr) ()

where f is some given function. Usually, we will denote the independent variable by ¢
since time is often the independent variable in physical problems, but sometimes we
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will use x instead. We will use y, or occasionally some other l'eltcr, to designate the
dependent variable. Equation (1) is said to bc(!!_nc:iP\if the function f has the form

, dy dy (2
) = | = - — —q()y, <)
/(uhm) #0) = P = (1)
that is, if' /' is lincar in y and y'. In Eq. (2) g, p, and g are specified functif)ns of the
independent variable ¢ but do not depend on y. In this case we usually rewrite Eq. (1)
as

I{ y' 4+ p)y +q)y = g(l)J

ntiation with respect to 1. Instead of Eq. (3), we often

(3)

where the primes denote differe

see the equation N
P@)y" + Q)Y + Ry = G(0). 4)
Of course, if P(7) # 0, we can divide Eq. (4) by P(r) and thereby obtain Eq. (3) with
= 20 _ RO ) 5)
p) = PG’ q(t) = -]-)-(t—)’ g(t) = P(f) '

In discussing Eq. (3) and in trying to solve it, we will restrict ourselves to intervals in
which p, ¢, and g are continuous functions. .

If Eq. (1) is not of the form (3) or (4), then it is called nonlinear. Analytical
investigations of nonlinear equations are relatively difficult, so we will have little to
say about them in this book. Numerical or geometical approaches are often more
appropriate, and these are discussed in Chapters 8 and 9. In addition, there are two
special types of second order nonlinear equations that can be solved by a change
of variables that reduces them to first order equations. This procedure is outlined in
Problems 28 through 43. i .

[~ An itial value problem consists of a differential equation such as Eq. (1), (3), or
' (4) together with a pair of initial conditions

Yt =yo V(i) =0, ©

~where y, and y; are given numberme that the initial conditions for a second
order equation prescribe not only a particular point (%, y,) through which the graph of
the solution must pass, but also the slope y; of the graph at that point. It is reasonable
to expect that two initial conditions are needed for a second order equation because,
roughly speaking, two integrations are required to find a solution and each integration
introduces an arbitrary constant. Presumably, two initial conditions will suffice to
determine values for these two constants. =
second order linear equation is said to be homogeneous if the term g(#) in
Eq. (3), or the term G(¢) in Eq. (4), is zero for all ¢. Otherwise, the equation is
called nonhomogeneous. As a result, the term g(¢), or G(¢), is sometimes called the
nonhomogeneous term. We begin our discussion with homogeneous equations, which
) we will wrile in the form
\‘,

P)y" +Q)y + R(f)y =0. @)

"There is a corresponding treatment of higher order linear equations in Chapter 4. If you wish, you may read the
appropriate parts of Chapter 4 in parallel with Chapter 3.
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Later, in Sections 3.6 and 3.7, we will show that once the homogencous equation
has been solved, it is always possible to solve the corresponding nonhomogeneous
equation (4), or at least to express the solution in terms of an integral. Thus the problem
of solving the homogencous equation is the more fundamental one.

In this chapter we will concentrate our attention on equations in which the func-
tions P, Q, and R are constants. In this case, Eq. (7) becomes

| by ey =0, / (8)

where a, b, and ¢ are given constants. It turns out that Eq. (8) can always be solved
casily in terms of the elementary funciions of calculus. On the other hand, it is usually
much more difficult to solve Eq. (7) if the coefficients are not constants, and a treatment
of that case is deferred until Chapter 5.

Before taking up Eq. (8), let us first gain some experience by looking at a simple,
but typical, example. Consider the equation

y'—=y=0, )

which is just Eq. (8) witha =1, b = 0, and ¢ = —1. In words, Eq. (9) says that we
seek a function with the property that the second derivative of the function is the
same as the function itself. A little thought will probably produce at least one well-
known function from calculus with this property, namely, y, (f) = €', the exponential
function. A little more thought may also produce a second function, y,(f) = e™. Some
further experimentation reveals that constant multiples of these two solutions are also
solutions. For example, the functions 2e’ and Se™" also satisfy Eq. (9), as you can verify
by calculating their second derivatives. In the same way, the functions ¢, y, (f) = c,e’
and c,y,(t) = c,e”" satisfy the differential equation (9) for all values of the constants
¢, and c,. Next, it is of paramount importance to notice that any sum of solutions of
Eq. (9) is also a solution. In particular, since ¢, y, (f) and ¢, , (#) are solutions of Eq. (9),
so is the function

y=c () +oypy(t) = cje' +ope” (10)

for any values of ¢, and c,. Again, this can be verified by calculating the second
derivative y” from Eq. (10). We have ' = c,e —c,e™ and y" = ¢;e’ + c,e”™'; thus
y" is the same as y, and Eq. (9) is satisfied.

Let us summarize what we have done so far in this example. Once we notice that the
functions y, (r) = €' and y,() = e™" are solutions of Eq. (9), it follows that the general
linear combination (10) of these functions is also a solution. Since the coefficients ¢
and ¢, in Eq. (10) are arbitrary, this expression represents a doubly infinite family of
solutions of the differential equation (9).

It is now possible to consider how to pick out a particular member of this infinite
family of solutions that also satisfies a given set of initial conditions. For example,
suppose that we want the solution of Eq. (9) that also satisfies the initial conditions

y(0) =2, Y(0) = —1, (1)

In other words, we seek the solution that passes through the point (0, 2) and at that
point has the slope — 1. First, we set/ = 0 and y = 2 in Eq, (10); this gives the equation

¢, te, =2, (12) 4=
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3.2 Fundamental Solutions of Linear Homogencous Equations 137

—

(b) Determine the coordinates t, and y,_ of the maximum point of the solution as functions
of B.

(¢) Determine the smallest value of A for which y, > 4.

(d) Determine the behavior of 1, and y, as f — oo.

27. Find an cquation of the form ay” 4 by’ 4 cy = 0 for which all solutions approach a
multiple of e™" ast = oo.

Equations with the Dependent Variable Missing. For a sccond order differential equation
of the form y” = f(¢, y'), the substitution v = y', v’ = y” leads to a first order equation of the
form v’ = (¢, v). If this equation can be solved for v, then y can be obtained by integrating
dy/dt = v. Note that one arbitrary constant is obtained in solving the first order equation for v,
and a second is introduced in the integration for y. In each of Problems 28 through 33 use this
substitution to solve the given equation.

8. ' +2ay =1=0, >0 2. ty'+y =1, 150
30. y'+1(y) =0 W 2+ =2y, 150
2. y'+y =e” 3.1y =) >0

Equations with the Independent Variable Missing. If a second order differential equation
has the form y” = f(y, y'), then the independent variable ¢ does not appear explicitly, but only
through the dependent variable . If we lctj) =y, /ﬁcn we obtain dv/dt = f(y, v). Since the
right side of this equation depends on y and v, rather than on f and v, this equation is not
of the form of the first order equations discussed in Chapter 2. However, if we think of y as
the independent variable, then by the chain rule dv/dt = (dv/dy)(dy/dr) = v(dv/dy). Hence
the original differential equation can be written as v(dv/dy) = f(y, v). Provided that this first
order equation can be solved, we obtain v as a function of y. A relation between y and f results
from solving dy/dt = v(y). Again, there are two arbitrary constants in the final result. In each
of Problems 34 through 39 use this method to solve the given differential equation.

M. 9"+ 0)r=0 35 y'+y=0

36. ¥ +y0/)} =0 3. 2% +2300) =1

38. W= =0 39. Y4+ () =27

Hint: In Problem 39 the transformed equation is a Bemoulli equation. See Problem 27 in
Section 2.4.

In each of Problems 40 through 43 solve the given initial value problem using the methods of
Problems 28 through 39.

4. yy'=2,  y0)=1, y©0)=2

41. y"' - 3,y2 =0, y0=2 y0)=4
2. 1+2y"+2y +3r2=0, y()=2, y(I)=-1
43. y'y"—1=0, yH=2 yd)=1

3.2 Fundamental Solutions of Linear Homogeneous Equations

In the preceding section we showed how to solve some differential equations of the
form

ay’" +by' +cy=0,

where a, b, and ¢ are constants. Now we build on those results to provide a clearer picture
of the structure of the solutions of all second order linear homogencous equations. In
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138 Chapter 3. Second Order Linear Equations

turn, this understanding will assist us in finding the solutions of other problems that
we will encounter later.

In developing the theory of linear differential equations, it is helpful to introduce a
differential operator notation. Let p and ¢ be continuous functions on an open interval /7,
thatis, fora < 1 < B. The cases o = —00, or f = 00, or both, are included. Then, for
any function ¢ that is twice differentiable on /, we define the differential operator
by the equation

Lipl=¢" + pd’ +q¢. (1)
Note that L[¢] is a function on /. The value of L[¢] at a point ¢ is
LI1(r) = ¢"(1) + p(1)' (1) + q (D ().
For example, if p(1) = 1%, ¢(f) = | 4+ 1, and $(¢) = sin 3¢, then
L)1) = (sin31)" + r*(sin3¢)’ + (1 + 1) sin 3¢
= —9sin 3¢ + 3t>cos 3t 4 (1 + 1) sin 31.

The operator L is often written as L = D? + pD +q, where D is the derivative
operator.

In this section we study the second order linear homogeneous equation L[¢](¢) = 0.
Since it is customary to use the symbol y to denote ¢(¢), we will usually write this
equation in the form

£

LIyl = " + p()y +q(t)y =0. &)
With Eq. (2) we associate a set of initial conditions
) =y . YVt = )

where #, is any point in the interval /, and y, and y; are given real numbers. We
would like to know whether the initial value problem (2), (3) always has a solution,
and whether it may have more than one solution. We would also like to know whether
anything can be said about the form and structure of solutions that might be helpful in
finding solutions of particular problems. Answers to these questions are contained in
the theorems in this section.

The fundamental theoretical result for initial value problems for second order linear
equations is stated in Theorem 3.2.1, which is analogous to Theorem 2.4.1 for first
order linear equations. The result applies equally well to nonhomogeneous equations,
so the theorem is stated in that form.

\, Theorem 3.2.1 Consider the initial value problem
V' +pOY +qy=g0t),  yUt)=yy V)= 4

where p, ¢, and g are continuous on an open interval /. Then there is e_xactly one
solution y = ¢(¢) of this problem, and the solution exists throughout the interval /.

We empbhasize that the theorem says three things:

1. The initial value problem has a solution; in other words, a solution exists.
2. The initial value problem has only one solution; that is, the solution is unique.
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3. The solution ¢ is defined throughout the interval 1 where the coefficients are
continuous and is at least twice differentiable there.

For some problems some of these assertions are easy to prove. For example, we
found in Section 3.1 that the initial value problem

)’” "y= 09 J’(O) - 2v ."’(0) = —1 (5)

has the solution
) — l ! :}. -
y=s3e+3e". (6)

The fact that we found a solution certainly establishes that a solution exists for this initial
value problem. Further, the solution (6) is twice differentiable, indeed differentiable
any number of times, throughout the interval (—co, 00) where the coefficients in the
differential equation are continuous. On the other hand, it is not obvious, and is more
difficult to show, that the initial value problem (5) has no solutions other than the one
given by Eq. (6). Nevertheless, Theorem 3.2.1 states that this solution is indeed the
only solution of the initial value problem (5).

However, for most problems of the form (4), it is not possible to write down a useful
expression for the solution. This is a major difference between first order and second
order linear equations. Therefore, all parts of the theorem must be proved by general
methods that do not involve having such an expression. The proof of Theorem 3.2.1 is
fairly difficult, and we do not discuss it here.”> We will, however, accept Theorem 3.2.1
as true and make use of it whenever necessary.

Find the longest interval in which the solution of the initial value problem

EXAMPLE ,

is certain to exist.

If the given differential equation is written in the form of Eq. (4), then p(f) =
1/(t = 3), q(t) = —(t + 3)/t(t — 3), and g(r) = 0. The only points of discontinuity
of the coefficients are # = 0 and ¢ = 3. Therefore, the longest open interval, containing
the initial point # = 1, in which all the coefficients are continuous is 0 < # < 3. Thus,
this is the longest interval in which Theorem 3.2.1 guarantees that the solution exists.

1 \
Z +-—EL & &£ $ =% ———i e
38 &3 &l 3
Find the unique solution of the initial value problem
EXAMPLE . ; :
2 Yo+ p@)y +q)y =0, y(tg) =0, () =0,
where p and ¢ are continuous in an open interval / containing 7.

The function y = ¢(r) = 0 for all £ in / certainly satisfies the differential equation
and initial conditions. By the uniqueness part of Theorem 3.2.1 it is the only solution
of the given problem.

\

\ 2A proof of Theorem 3.2.1 may be found, for example, in Chapter 6, Section 8 of the book by Coddington listed
\ in the references.

\7\\ " ) ‘j‘ i L+3 .\ % a
£CE-3) t€e)
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Let us now assume that y, and y, are two solutions of Eq. (2); in other words,
Ly =2+ py| +qp, =0, (7)
and similarly for y,. Then, just as in the examples in Section 3. 1, we can generate

more solutions by fom'nng linear combinations of y, and y,. We state this result as a
theorem.

Theorem 3.2.2 (Principle of Superposition) If y, and y, are two solutions of the differential
= cquation (2),

Liyl=y"+p@)y +q)y =0,

then the lincar combination ¢,y +czy is also a solution for any values of the
constants ¢, and C,.

A special case of Theorem 3.2.2 occurs if either ¢, or c, is zero. Then we conclude
that any multiple of a solution of Eq. (2) is also a solution.
To prove Theorem 3.2.2 we need only substitute

y=cn () +cpy(0) (3)
for y in Eq. (2). The result is

Llewy, +cop,] = ey, + eop,]" + pleyy, + o) +4qleyy; + eop,]
= ¢y + ¢, 5+ pyy + oy + 019y, + 6247,
=c,b + pyi + anl+ ;b4 + pys +ax,]
=c, L]+ el

Since L[y,] =0 and L[y,] =0, it follows that L[c,y, + c,y,] = 0 also. Therefore,
regardless of the values of ¢, and c,, y as given by Eq. (8) does satisfy the differential
equation (2) and the proof of Theorem 3.2.2 is complete.

Theorem 3.2.2 states that, beginning with only two solutions of Eq. (2), we can
construct a doubly infinite family of solutions by means of Eq. (8). The next question is
whether all solutions of Eq. (2) are included in Eq. (8), or whether there may be other
solutions of a different form. We begin to address this question by examining whether
the constants ¢, and ¢, in Eq. (8) can be chosen so as to satisfy the initial conditions
(3). These initial conditions require ¢, and c, to satisfy the equations

ey, (f) + cz}’p_(fo) =Y )
c]y; (’0) aF czy?,.(to) =

Upon solving Egs. (9) for ¢, and c,, we find that

. Yoy (ty) — Yoy, (ty) . =i () + yoy, (8) ’ (10)
yl(’o))’é(’o) = }’; (10)}’2(f0) 4 N (fo)yz(’o) N (’o))’g(to) h
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or, in terms of determinants,

y() yz (’ 0)
'

Yo o »(ty)

’ .vl(’(,) vo |

/ /
)’] (’()) ,"0
' 6= I . (11)

C =
: .v|(’()) ."3(’()) N (’()) )’2(’0)

Nty ¥t Nty) ity
With these values for ¢, and ¢, the expression (8) satisfics the initial conditions (3) as
well as the differential equation (2).

In order for the expressions for ¢, and ¢, in Eqs. (10) or (11) to make sense, it is
necessary that the denominators be nonzero. For both ¢, and ¢, the denominator is the
same, namely, the determinant

N
N (’0) Vs (fo)
y; (to) )’é(fo)

/ =

=y, (tg) 5 (ty) = y1 )y, (1) (12)

The determinant 7 is called the Wronskian® determinant, or simply the Wronskian,
of the solutions y, and y,. Sometimes we use the more extended notation ¥ ( Vi 2) ()
to stand for the expression on the right side of Eq. (12), thereby emphasizing that the
Wronskian depends on the functions y, and y,, and that it is evaluated at the point #,.
The preceding argument suffices to establish the following result.

Theorem 3.2.3  Suppose that y, and y, are two solutions of Eq. (2),
e T e /
Lyl =y"+ p(0)y' +q®)y =0,

and that the Wronskian L
W=yipn=yny == 9 I
is not zero at the point #, where the initial conditions (3),
yt) =yp V't =,

are assigned. Then there is a choice of the constants ¢, ¢, for which y = ¢, y,(f) +
¢, (t) satisfies the differential equation (2) and the initial conditions (3).

In Example 1 of Section 3.1 we found that y, (1) = e and »(t) = ¢3! are solutions

EXA;,: PLE of the differential equation ;
| Y'+5y +6y=0.

Find the Wronskian of y, and y,.
The Wronskian of these two functions is
=2t -3t
e e _s
W= & _ 2
_2e 2t =3¢ 3t

3 Wronskian determinants are named for Josef Maria Hoéné-Wronski (1776-1853), who was born in Poland but
spent most of his life in France. Wronski was a gifted but troubled man, and his life was marked by frequent
heated disputes with other individuals and institutions.
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Cheorem 3.2.4

e————

Since W is nonzero for all values of 7, the functions y, and y, can be used to cons!'ruct
solutions of the given differential equation, together with initial conditions prescribed
atany value of 7. One such initial value problem was solved in Example 2 of Section 3. 1.

The next theorem justifies the term “general solution” that we introduced in Section
3.1 for the linear combination on oy

It v, and y, are two solutions of the differential equation (2),
Lyl =y"+p@)y +49(Oy =0,

and if there is a point ¢, where the Wronskian of y; and y, is nonzero, then the family
of solutions

y=on )+ CZyZ(’)
with arbitrary coefficients ¢, and ¢, includes every solution of Eq. (2).

Let ¢ be any solution of Eq. (2). To prove the theorem we must show that ¢ is included
in the linear combination ¢, y, 4+ ¢, ,; that is, for some choice of the constants ¢, and
¢,, the linear combination is equal to ¢. Let #, be a point where the Wronskian of y,
and y, is nonzero. Then evaluate ¢ and ¢’ at this point and call these values y, and Yoo
respectively; thus

J’o = ¢(to)1 .V(,) = ¢,({0)'
Next, consider the initial value problem
YV'+p®y +9@0)y =0, yt)=yy Yt) = (13)

The function ¢ is certainly a solution of this initial value problem. On the other hand,
since W (y,.y,)(%,) is nonzero, it is possible (by Theorem 3.2.3) to choose ¢, and ¢, so
that y = ¢, y,(f) + c,,(¢) is also a solution of the initial value problem (13). In fact,
the proper values of ¢, and c, are given by Egs. (10) or (11). The uniqueness part of
Theorem 3.2.1 guarantees that these two solutions of the same initial value problem
are actually the same function; thus, for the proper choice of ¢, and c,,

o) = Cl}’](l) + cz)’g(f)’

and therefore ¢ is included in the family of functions of ¢, y, + c,y,. Finally, since
¢ is an arbitrary solution of Eq. (2), it follows that every solution of this equation is
included in this family. This completes the proof of Theorem 3.2.4.

Theorem 3.2.4 states that, as long as the Wronskian of y, and y, is not everywhere
zero, the linear combination ¢, y, + ¢,y, contains all solutions of Eq. (2). It is therefore
natural (and we have already done this in the preceding section) to call the expression

y=cy )+ ), (1)

with arbitrary constant coefficients the general solution of Eq. (2). The solutions y,
and y,, with a nonzero Wronskian, are said to form a fundamental set of solutions of

Eq. (2).
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.

To restate the result of Theorem 3.2.4 in slightly different language: To find the
general solution, and therefore all solutions, of an equation of the form (2), we need
only find two solutions of the given equation whose Wronskian is nonzero. We did
precisely this in several examples in Section 3.1, although there we did not calculate
the Wronskians. You should now go back and do that, thereby verifying that all the
solutions we called “general solutions™ in Section 3.1 do satisfy the necessary Wron-
skian condition. Alternatively, the following example includes all those mentioned in
Section 3.1, as well as many other problems of a similar type.

Suppose that y, (1) = "' and y,(r) = ¢"2' are two solutions of an equation of the form
EXAMPLE (2). Show that they form a fundamental set of solutions if r, # ry.
4 We calculate the Wronskian of y, and y,:
é _ el‘ll e,z]
W= r‘e’l’ ryet! = (r, = r) exp[(r, + ryt].

Since the exponential function is never zero, and since r, —r, # 0 by the statement of
the problem, it follows that I¥ is nonzero for every value of #. Consequently, y, and y,
form a fundamental set of solutions. '

Show that y,(¢) = "2 and »(@) = t~! form a fundamental set of solutions of
EXAMPLE :
5 205" +3ty —y =0, t>0. (14)

e We will show in Section 5.5 how to solve Eq. (14); see also Problem 38 in Section 3.4.
eh However, at this stage we can verify by direct substitution that y, and y, are solutions
of the differential equation. Since y}(f) = %t‘”z and y{'(1) = — 417 2 we have

20(=37) + 3G -2 = (L4 32 =
Similarly, y5(f) = —t~2 and y(f) = 213, s0
2027 +3(—1 ) - =@-3-1"=0.
Next we calculate the Wronskian ¥ of y, and y,:
W= %:'_/,1,2 _::; = -3, (15)

Since W # 0 for ¢ > 0, we conclude that y, and y, form a fundamental set of solutions
there.

In several cases, we have been able to find a fundamental set of solutions, and
therefore the general solution, of a given differential equation. However, this is often a
difficult task, and the question may arise as to whether or not a differential equation of
the form (2) always has a fundamental set of solutions. The following theorem provides
an affirmative answer to this question.
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33 Linear Independence and the Wronskian
| /’f

i In cach of Problems 33 through 35 use the result of Problem 32 to find th
‘ differential cquation.

¢ adjoint of the given

33, x%y 4xy +(xP=vYy=0,  Bessel's equation

34. (1=xY)y" =2y +a(@+ 1)y =0, Legendre's equation

35. y"—xy=0,  Airy’s cquation

36. For the second order lincar equation P(x)y” + Q(x)y’ + R(x)y = 0, show that the adjoint
of the adjoint cquation is the original equation.

37. A sccond order linear equation P(x)y” + Q(x)y’ + R(x)y = 0 is said to be self-adjoint
if its adjoint is the same as the original equation. Show that a necessary condition for this
cquation to be sclf-adjoint is that P'(x) = Q(x). Determine whether cach of the equations
in Problems 33 through 35 is sclf-adjoint.

&

3.3 Linear Independence and the Wronskian

g—

The representation of the general solution of a second order lincar homogeneous
differential equation as a linear combination of two solutions whose Wronskian is not
zero is intimately related to the concept of linear independence of two functions. This
is a very important algebraic idea and has significance far beyond the present context;
we briefly discuss it in this section.

We will refer to the following basic property of systems of linear homogeneous
algebraic equations. Consider the two-by—two system

ayxy +apx, =0, )

ay X +ayx, =0,

and let A = ay,a,, — a,,a,, be the corresponding determinant of coefficients. Then
x =0, y = 0 is the only solution of the system (1) if and only if A # 0. Further, the
system (1) has nonzero solutions if and only if A = 0.

Two functions f and g are said to be linearly dependent on an interval I if there
exist two constants &, and k,, not both zero, such that

ki f(t) + k,g(t) =0 2)

for all ¢ in /. The functions f and g are said to be linearly independent on an
interval / if they are not linearly dependent; that is, Eq. (2) holds for all ¢ in I only
if k, = k, = 0. In Section 4.1 these definitions are extended to an arbitrary number of
functions. Although it may be difficult to determine whether a large set of functions is
linearly independent or linearly dependent, it is usually easy to answer this question
for a set of only two functions: they are linearly dependent if they are proportional
to each other, and linearly independent otherwise. The following examples illustrate
these definitions.

EXAMPLE Determine whether the functions sin# and cos(f — /2) are linearly independent or
1 linearly dependent on an arbitrary interval.
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.~ 10 the two functions f(r) = — 2 g 4
- ~1 2y point £, we have J(t) = ¢' and g(1) = ¥ discussed in

W(f' g)(’o) —

el ez'o
e’ 2¢%

= #0 (6)

: 1 % A i
The functions e’ and e” are therefore linearly independent on any interval,
You should be careful not to read too much into Theorem 3.3.1. In particular, two

functions f and g may be lincarly independent even though I ( Ji 8)(t) = 0 for every
t in the interval /. This is illustrated in Problem 28.

Now let us examine further the properties of the Wronskian of two solutions of a
second order lincar homogencous differential equation. The following theorem, perhaps
surprisingly, gives a simple explicit formula for the Wronskian of any two solutions of
any such equation, even if the solutions themselves are not known.

m 3.3.2 el (Abel’s Theorem)* If »; and y, are solutions of the differential equation
—

Liyl=y"+ p@)y' +q@®)y =0, ™

where p and g are continuous on an open interval /, then the Wronskian W (y,, y,)(?)
is given by

Wy, y,)(t) = cexp [— / p(0) dt] i (8)

where ¢ is a certain constant that depends on y, and y,, but not on f. Further,
W(y,, ¥,)(¢) is either zero for all ¢ in 7 (if ¢ = 0) or else is never zero in / (if ¢ # 0).

To prove Abel’s theorem we start by noting that y, and y, satisfy
w+ Py +qOy, =0,
»2 +p0)ys+q(0)y, =0.

If we multiply the first equation by —y,, the second by y,, and add the resulting
equations, we obtain

&)

s = Y1y + POy = ¥y, = 0. (10)
Next, we let W(r) = W(y,,,)(#) and observe that
W =y, 53 =N, (11
Then we can write Eq. (10) in the form
W+ pt)W =0. (12)

“The result in Theorem 3.3.2 was derived by the Norwegian mathematician Niels Henrik Abel (1802-1829) in
1827 and is known as Abel’s formula. Abel also showed that there is no general formula for solving a quintic, or
fifth degree, polynomial equation in terms of explicit algebraic operations on the coefficients, thereby resolving
a question that had been open since the sixteenth century. His greatest contributions, however, were in analysis,
particularly in the study of elliptic functions. Unfortunately, his work was not widely noticed until after his death.
The distinguished French mathematician Legendre called it a “monument more lasting than bronze.”
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Equation (12) can be solved immediately since it is both a first order linear equation
(Section 2.1) and a separable equation (Section 2.2). Thus

W(t) = cexp [— / (1) dr] ' (13)

where ¢ is a constant. The value of ¢ depends on which pair of solutions of Eq. (7) is
involved. However, since the exponential function is never zero, W (¢) is not zero unless
¢ =0, in which case W(r) is zero for all 7, which completes the proof of Theorem
332

Note that the Wronskians of any two fundamental sets of solutions of the same
differential equation can differ only by a multiplicative constant, and that the Wronskian
of any fundamental set of solutions can be determined, up to a multiplicative constant,
without solving the differential equation.

In Example 5 of Section 3.2 we verified that y, () = t'/* and y,(¢) = +~" are solutions
EXAMPLE of the equation

< 3 203" +3ty' —y =0, t>0. (14)

Verify that the Wronskian of y, and y, is given by Eq. (13).

From the example just cited we know that W (y,, »,)(t) = —(3/2)t~>/>. To use
Eq. (13) we must write the differential equation (14) in the standard form with the
coefficient of y” equal to 1. Thus we obtain

yll+iyl_i )
..

so p(t) = 3/2t. Hence

g
W(yy. y,)(t) = c exp [—f % dt] = cexp (—5 lnt)

=ct™2, (15)
Equation (15) gives the Wronskian of any pair of solutions of Eq. (14). For the particular
solutions given in this example we must choose ¢ = —3/2.

A stronger version of Theorem 3.3.1 can be established if the two functions involved
are solutions of a second order linear homogeneous differential equation.

Theorem 3.3.3 Lety, and y, be the solutions of Eq. (7),
Lyl=y"+p®)y +q(y =0,

where p and g are continuous on an open interval /. Then y, and y, are lincarly
dependent on / if and only if W (y,, y,)(#) is zero for all ¢ in /. Alternatively, y, and
¥, are linearly independent on / if and only if W (y,, y,)(¢) is never zero in /.

Of course, we know by Theorem 3.,3.2 that W( ¥y, ¥,)(¢) is either everywhere zero or
nowhere zero in /. In proving Theorem 3.3.3, observe first that if y, and y, are linearly
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dependent, then W.(V‘.‘ »))(1) is zero for all 7 in 7 by Theorem 3.3.1. It remains to prove
the converse; that is, if W(,}’l ; :\’2)(f) is zero throughout 7, then y, and y, are lincarly
dependent. Let 7, be any point in 7; then necessarily W(y,. v,)(f,) = 0. Consequently,
the system of equations

() 4,05 (1) =0,
e (te) + ¢,)5(ty) =0

for ¢, and ¢, has a nontrivial solution. Using these values of ¢, and c,, let ¢(1) =
¢, 3, (1) + ¢,»,(7). Then ¢ is a solution of Eq. (7), and by Egs. (16) ¢ also satisfies the
initial conditions

(16)

(1) =0, ¢'(t,) = 0. (17)

Therefore, by the uniqueness part of Theorem 3.2.1, or by Example 2 of Section 3.2,
¢(1) = Oforallzin 7. Since ¢ (1) = ¢, y,(1) + c,p,(t) with ¢, and ¢, not both zero, this
means that y, and y, are linearly dependent. The alternative statement of the theorem
follows immediately. SIS ¢
/‘chan’n'éw summarize the facts about fundamental sets of solutions, Wronskians,
and linear independence in the following way. Let y, and y, be solutions of Eq. (7),

Y+ p@)y +4q(@)y =0,

where p and g are continuous on an open interval /. Then the following four statements
are equivalent, in the sense that each one implies the other three:

1. The functions y, and y, are a fundamental set of solutions on /. /
2. The functions y, and y, are linearly independent on /. P4
3. Wy, y,)(t,) # 0 forsome#;in /. ///

4. W(y,,y,)(@) #O0foralltinl. gl il L iie, semet

/{ﬁﬁﬁﬁgﬁﬁg'To note the similarity between second order linear homogeneous
differential equations and two-dimensional vector algebra. Two vectors a and b are
said to be linearly dependent if there are two scalars &, and k,, not both zero, such that
k,a + k,b = 0; otherwise, they are said to be linearly independent. Let i and j be unit
vectors directed along the positive x and y axes, respectively. Since ki + k,j = 0 only
if k, = k, = 0, the vectors i and j are linearly independent. Further, we know that any
vector a with components a, and a, can be written as a = a,i + a,j, that is, as a linear
combination of the two linearly independent vectors i and j. It is not difficult to show
that any vector in two dimensions can be expressed as a linear combination of any two
linearly independent two-dimensional vectors (see Problem 14). Such a pair of linearly
independent vectors is said to form a basis for the vector space of two-dimensional
vectors.

The term vector space is also applied to other collections of mathematical objects
that obey the same laws of addition and multiplication by scalars that geometric vectors
do. For example, it can be shown that the set of functions that are twice differentiable
on the open interval / forms a vector space. Similarly, the set ¥ of functions satisfying
Eq. (7) also forms a vector space.

Since every member of ¥ can be expressed as a linear combination of two linearly
independent members y, and y,, we say that such a pair forms a basis for V. This leads
to the conclusion that ¥ is two-dimensional; therefore, it is analogous in many respects
to the space of geometric vectors in a plane. Later we find that the set of solutions of an
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