The Basic Elements and Phasors

14.5 **AVERAGE POWER AND POWER FACTOR**

$$
V = V_m \sin(\omega t + \theta_v)
$$

$$
i = I_m \sin(\omega t + \theta_i)
$$

$$
P = \frac{V_m I_m}{2} \cos \theta \qquad \text{(watts, W)}
$$

$$
\theta = |\theta_v - \theta_i|
$$

where P is the average power in watts. This equation can also be written

$$
P = \left(\frac{V_m}{\sqrt{2}}\right) \left(\frac{I_m}{\sqrt{2}}\right) \cos \theta
$$

$$
V_{\text{eff}} = \frac{V_m}{\sqrt{2}} \quad \text{and} \quad I_{\text{eff}} = \frac{I_m}{\sqrt{2}}
$$

or, since

Equation (14.14) becomes

Average power

$$
P = V_{\text{eff}} I_{\text{eff}} \cos \theta \qquad (14.15)
$$

Resistor

In a purely resistive circuit, since V and i are in phase, $|\theta_v - \theta_i| = \theta$ 0°, and cos θ = cos 0° = 1, so that

> $P = \frac{V_m I_m}{2} = V_{\text{eff}} I_{\text{eff}}$ (W) $I_{\text{eff}} = \frac{V_{\text{eff}}}{R}$

then
$$
P = \frac{V_{\text{eff}}^2}{R} = I_{\text{eff}}^2 R
$$
 (W)

Inductor

In a purely inductive circuit, since v leads i by 90°, $|\theta_v - \theta_i| = \theta$ $|-90^{\circ}| = 90^{\circ}$. Therefore,

Or, since

$$
P = \frac{V_m I_m}{2} \cos 90^\circ = \frac{V_m I_m}{2}(0) = 0 \text{ W}
$$

The average power or power dissipated by the ideal inductor (no associated resistance) is zero watts.

Capacitor

In a purely capacitive circuit, since *i* leads *v* by 90°, $|\theta_v - \theta_i| = \theta$ = $|-90^{\circ}| = 90^{\circ}$. Therefore,

$$
P = \frac{V_m I_m}{2} \cos(90^\circ) = \frac{V_m I_m}{2}(0) = 0
$$
 W

The average power or power dissipated by the ideal capacitor (no associated resistance) is zero watts.

EXAMPLE 14.10 Find the average power dissipated in a network whose input current and voltage are the following:

$$
i = 5 \sin(\omega t + 40^{\circ})
$$

$$
V = 10 \sin(\omega t + 40^{\circ})
$$

Solution: Since V and i are in phase, the circuit appears to be purely resistive at the input terminals. Therefore,

$$
P = \frac{V_m I_m}{2} = \frac{(10 \text{ V})(5 \text{ A})}{2} = 25 \text{ W}
$$

OT

$$
R = \frac{V_m}{I_m} = \frac{10 \text{ V}}{5 \text{ A}} = 2 \text{ }\Omega
$$

$$
P = \frac{V_{\text{eff}}^2}{R} = \frac{[(0.707)(10 \text{ V})]^2}{2} = 25 \text{ W}
$$

and

or
$$
P = I_{\text{eff}}^2 R = [(0.707)(5 \text{ A})]^2 (2) = 25 \text{ W}
$$

EXAMPLE 14.11 Determine the average power delivered to networks having the following input voltage and current:

a. $v = 100 \sin(\omega t + 40^{\circ})$ $i = 20 \sin(\omega t + 70^{\circ})$ b. $V = 150 \sin(\omega t - 70^{\circ})$ $i = 3 \sin(\omega t - 50^{\circ})$

Solutions:

a.
$$
V_m = 100
$$
, $\theta_V = 40^{\circ}$
\n $I_m = 20$, $\theta_i = 70^{\circ}$
\n $\theta = |\theta_V - \theta_i| = |40^{\circ} - 70^{\circ}| = |-30^{\circ}| = 30^{\circ}$
\nand

$$
P = \frac{V_m I_m}{2} \cos \theta = \frac{(100 \text{ V})(20 \text{ A})}{2} \cos(30^\circ) = (1000 \text{ W})(0.866)
$$

$$
= 866 \text{ W}
$$

b.
$$
V_m = 150 \text{ V}, \qquad \theta_v = -70^{\circ}
$$

\n $I_m = 3 \text{ A}, \qquad \theta_i = -50^{\circ}$
\n $\theta = |\theta_v - \theta_i| = |-70^{\circ} - (-50^{\circ})|$
\n $= |-70^{\circ} + 50^{\circ}| = |-20^{\circ}| = 20^{\circ}$
\nand

$$
P = \frac{V_m I_m}{2} \cos \theta = \frac{(150 \text{ V})(3 \text{ A})}{2} \cos(20^\circ) = (225 \text{ W})(0.9397)
$$

$$
= 211.43 \text{ W}
$$

Power Factor

In the equation $P = (V_m I_m/2) \cos \theta$, the factor that has significant control over the delivered power level is the cos θ . No matter how large the voltage or current, if cos $\theta = 0$, the power is zero; if cos $\theta = 1$, the power delivered is a maximum. Since it has such control, the expression was given the name power factor and is defined by

Power factor = $F_p = \cos \theta$

 (14.18)

Power factor is said to be leading if I leads V And said to be lagging if I lagges v

EXAMPLE 14.12 Determine the power factors of the following loads, and indicate whether they are leading or lagging:

a.
$$
F_p = \cos \theta = \cos |40^\circ - (-20^\circ)| = \cos 60^\circ = 0.5
$$
 leading

b.
$$
F_p = \cos \theta |80^\circ - 30^\circ| = \cos 50^\circ = 0.6428
$$
 lagging

c.
$$
F_p = \cos \theta = \frac{P}{V_{\text{eff}}I_{\text{eff}}} = \frac{100 \text{ W}}{(20 \text{ V})(5 \text{ A})} = \frac{100 \text{ W}}{100 \text{ W}} = 1
$$

The load is resistive, and F_p is neither leading nor lagging.

COMPLEX NUMBERS Ąj **14.7 RECTANGULAR FORM** $C = X + jY$ $C = X + jY$ \mathbf{y} $C = 3 + j4$ \overline{x} ∣–j $4j$ $C = 3 + j4$

14.8 POLAR FORM

The format for the polar form is

 $C = Z \angle \theta$

with the letter Z chosen from the sequence X , Y , Z .

14.9 CONVERSION BETWEEN FORMS

The two forms are related by the following equations, as illustrated in Fig. 14.45.

Rectangular to Polar

$$
Z = \sqrt{X^2 + Y^2}
$$
 (14.23)

$$
\theta = \tan^{-1} \frac{Y}{X}
$$
 (14.24)

Polar to Rectangular

$$
X = Z \cos \theta \qquad (14.25)
$$

$$
Y = Z \sin \theta \qquad (14.26)
$$

EXAMPLE 14.15 Convert the following from rectangular to p form:

$$
C = 3 + j \, 4 \qquad \text{(Fig. 14.46)}
$$

Solution:

$$
Z = \sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5
$$

$$
\theta = \tan^{-1}\left(\frac{4}{3}\right) = 53.13^{\circ}
$$

 $C = 5 \angle 53.13^{\circ}$

and

