Relations Chapter 9

Relations and Their Properties Section 9.1

Binary Relations

Definition: A *binary relation R* from a set *A* to a set *B* is a subset $R \subseteq A \times B$.

Example:

- Let $A = \{0,1,2\}$ and $B = \{a,b\}$
- $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to *B*.
- We can represent relations from a set *A* to a set *B* graphically or using a table:

Binary Relation on a Set

Definition: A binary relation *R on a set A* is a subset of *A* × *A* or a relation from *A* to *A*.

Example:

- Suppose that $A = \{a,b,c\}$. Then $R = \{(a,a),(a,b),(a,c)\}$ is a relation on *A*.
- Let $A = \{1, 2, 3, 4\}$. The ordered pairs in the relation $R = \{(a,b) \mid a \text{ divides } b\}$ are $(1,1)$, $(1, 2)$, $(1,3)$, $(1, 4)$, $(2, 2)$, $(2, 4)$, $(3, 3)$, and $(4, 4)$.

Binary Relation on a Set (*cont.*)

Question: How many relations are there on a set *A*?

Solution: Because a relation on *A* is the same thing as a subset of $A \times A$, we count the subsets of $A \times A$. Since $A \times A$ has n^2 elements when A has n elements, and a set with *m* elements has 2^m subsets, there are $2^{|A|^2}$ subsets of $A\times A.$ Therefore, there are $2^{|A|^2}$ relations on a set $A.$ $2^{|A|^2}$ $2^{|A|^2}$

Binary Relations on a Set (*cont*.)

Example: Consider these relations on the set of integers: $R_1 = \{(a,b) \mid a \le b\},$
 $R_2 = \{(a,b) \mid a > b\},$
 $R_5 = \{(a,b) \mid a = b + c\},$
 $R_6 = \{(a,b) \mid a = b + c\}$ $R_5 = \{(a,b) \mid a = b + 1\},\$ $R_3 = \{(a,b) \mid a = b \text{ or } a = -b\}, \qquad R_6 = \{(a,b) \mid a + b \leq 3\}.$

Which of these relations contain each of the pairs

 $(1,1)$, $(1, 2)$, $(2, 1)$, $(1, -1)$, and $(2, 2)$?

Solution: Checking the conditions that define each relation, we see that the pair $(1,1)$ is in R_1 , R_3 , R_4 , and R_6 : (1,2) is in R_1 and R_6 : (2,1) is in R_2 , R_5 , and R_6 : (1, −1) is in \tilde{R}_2 , \tilde{R}_3 , and \tilde{R}_6 : (2,2) is in R_1 , R_3 , and \tilde{R}_4 .

Reflexive Relations

Definition: R is *reflexive* iff (a, a) ∈ R for every element $a \in A$. Written symbolically, R is reflexive if and only if $\forall x[x \in U \longrightarrow (x,x) \in R]$

Symmetric Relations

Definition: *R* is *symmetric* iff $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$. Written symbolically, R is symmetric if and only if

 $\forall x \forall y$ $(x,y) \in R \rightarrow (y,x) \in R$

EXAMPLE 7 Consider the following relations on $\{1, 2, 3, 4\}$:

> $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$ $R_2 = \{(1, 1), (1, 2), (2, 1)\}\$, Symmetric $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}$, Symmetric $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$ $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$ $R_6 = \{(3, 4)\}.$

Antisymmetric Relations

Definition:A relation *R* on a set *A* such that for all *a,b* A if $(a,b) \in R$ and $(b,a) \in R$, then $a = b$ is called *antisymmetric*. Written symbolically, *R* is antisymmetric if and only if

 $\forall x \forall y$ $[(x,y) \in R \land (y,x) \in R \rightarrow x = y]$

EXAMPLE 7 Consider the following relations on $\{1, 2, 3, 4\}$:

> $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$ $R_2 = \{(1, 1), (1, 2), (2, 1)\},\$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$ Antisymmetric $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}\$, Antisymmetric $R_6 = \{(3, 4)\}\$ Antisymmetric

 R_4 , R_5 , and R_6 are all antisymmetric. For each of these relations there is no pair of elements a and b with $a \neq b$ such that both (a, b) and (b, a) belong to the relation. The reader should verify that none of the other relations is antisymmetric. This is done by finding a pair (a, b) with $a \neq b$ such that (a, b) and (b, a) are both in the relation.

Consider these relations on the set of integers: **EXAMPLE 5**

 $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\}$, symmetric symmetric Antisymmetric $R_6 = \{(a, b) \mid a + b \leq 3\}$. symmetric $R_1 = \{(a, b) \mid a \leq b\}$, Antisymmetric $R_2 = \{(a, b) \mid a > b\}$, Antisymmetric $R_5 = \{(a, b) \mid a = b + 1\}$, Antisymmetric

Solution: The relations R_3 , R_4 , and R_6 are symmetric. R_3 is symmetric, for if $a = b$ or $a = -b$, then $b = a$ or $b = -a$. R_4 is symmetric because $a = b$ implies that $b = a$. R_6 is symmetric because $a + b \le 3$ implies that $b + a \le 3$. The reader should verify that none of the other relations is symmetric.

The relations R_1 , R_2 , R_4 , and R_5 are antisymmetric. R_1 is antisymmetric because the inequalities $a \leq b$ and $b \leq a$ imply that $a = b$. R_2 is antisymmetric because it is impossible that $a > b$ and $b > a$. R_4 is antisymmetric, because two elements are related with respect to R_4 if and only if they are equal. R_5 is antisymmetric because it is impossible that $a = b + 1$ and $b = a + 1$. The reader should verify that none of the other relations is antisymmetric.

Transitive Relations

Definition: A relation *R* on a set *A* is called transitive if whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$. Written symbolically, R is transitive if and only if

 $\forall x \forall y \forall z$ [$(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R$]

Consider the following relations on $\{1, 2, 3, 4\}$: **EXAMPLE 7**

> $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$ $R_2 = \{(1, 1), (1, 2), (2, 1)\}.$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$ $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$ $R_6 = \{(3, 4)\}.$

Solution: R_4 , R_5 , and R_6 are transitive. For each of these relations, we can show that it is transitive by verifying that if (a, b) and (b, c) belong to this relation, then (a, c) also does. For instance, R_4 is transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3) and $(3, 2)$ are the only such sets of pairs, and $(3, 1)$, $(4, 1)$, and $(4, 2)$ belong to R_4 . The reader should verify that R_5 and R_6 are transitive.

 R_1 is not transitive because (3, 4) and (4, 1) belong to R_1 , but (3, 1) does not. R_2 is not transitive because (2, 1) and (1, 2) belong to R_2 , but (2, 2) does not. R_3 is not transitive because $(4, 1)$ and $(1, 2)$ belong to R_3 , but $(4, 2)$ does not.

Combining Relations

- Given two relations R_1 and R_2 , we can combine them using basic set operations to form new relations such as $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, and $R_2 - R_1$.
- **Example**: Let $A = \{1,2,3\}$ and $B = \{1,2,3,4\}$. The relations $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$ can be combined using basic set operations to form new relations:

$$
R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}
$$

 $R_1 \cap R_2 = \{(1,1)\}$ $R_1 - R_2 = \{(2,2), (3,3)\}$

$$
R_2 - R_1 = \{(1,2), (1,3), (1,4)\}
$$

Composition

Definition: Suppose

- *R*¹ is a relation from a set *A* to a set *B*.
- *R*² is a relation from *B* to a set *C*.

Then the *composition (or composite)* of R_2 with R_1 , is a relation from *A* to *C* where

• if (x, y) is a member of R_1 and (y, z) is a member of R_2 , then (x, z) is a member of R_2 • R_1 .

EXAMPLE 20

What is the composite of the relations R and S, where R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}\$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

Solution: $S \circ R$ is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered pair in R agrees with the first element of the ordered pair in S. For example, the ordered pairs $(2, 3)$ in R and $(3, 1)$ in S produce the ordered pair $(2, 1)$ in $S \circ R$. Computing all the ordered pairs in the composite, we find

 $S \circ R = \{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}.$

Representing Relations Section 9.3

Section Summary

- Representing Relations using Matrices
- Representing Relations using Digraphs

Representing Relations Using

Matrices

- A relation between finite sets can be represented using a zero-one matrix.
- Suppose *R* is a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}.$
	- The elements of the two sets can be listed in any particular arbitrary order. When $A = B$, we use the same ordering.
- The relation *R* is represented by the matrix $M_R = [m_{ij}]$, where

 $m_{ij} = \begin{cases} 1 \text{ if } (a_i, b_j) \in R, \\ 0 \text{ if } (a_i, b_i) \notin R. \end{cases}$

 The matrix representing *R* has a 1 as its (*i*,*j*) entry when *aⁱ* is related to b_j and a 0 if a_i is not related to b_j .

Examples of Representing Relations Using Matrices

Example 1: Suppose that $A = \{1,2,3\}$ and $B = \{1,2\}$. Let *R* be the relation from *A* to *B* containing (a,b) if $a \in A$, $b \in B$, and $a > b$. What is the matrix representing R (assuming the ordering of elements is the same as the increasing numerical order)?

Solution: Because $R = \{(2,1), (3,1), (3,2)\}\)$, the matrix is

$$
M_R = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{array} \right].
$$

Examples of Representing

Relations Using Matrices (*cont.*)

Example 2: Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation *R* represented by the matrix

$$
M_R = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{array} \right]
$$
?

Solution: Because *R* consists of those ordered pairs (a_i, b_j) with $m_{ij} = 1$, it follows that:

 $R = \{ (a_1, b_2), (a_2, b_1), (a_2, b_3), (a_2, b_4), (a_3, b_1), (a_3, b_3), (a_3, b_5) \}.$

Matrices of Relations on Sets

- If *R* is a reflexive relation, all the elements on the main diagonal of M_R are equal to 1.
- *R* is a symmetric relation, if and only if *mij* = 1 whenever $m_{ji} = 1$. *R* is an antisymmetric relation, if and only if $m_{ij} = 0$ or $m_{ji} = 0$ when $i \neq j$.

Example of a Relation on a Set

Example 3: Suppose that the relation *R* on a set is represented by the matrix

$$
M_R = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]
$$

Is *R* reflexive, symmetric, and/or antisymmetric? **Solution**: Because all the diagonal elements are equal to 1, *R* is reflexive. Because *M^R* is symmetric, *R* is symmetric and not antisymmetric because both $m_{1,2}$ and $m_{2,1}$ are 1.

Representing Relations Using Digraphs

Definition: A *directed graph*, or *digraph*, consists of a set *V* of *vertices* (or *nodes*) together with a set *E* of ordered pairs of elements of *V* called *edges* (or *arcs*). The vertex *a* is called the *initial vertex* of the edge (*a*,*b*), and the vertex *b* is called the *terminal vertex* of this edge.

An edge of the form (*a*,*a*) is called a *loop*.

Example 7: A drawing of the directed graph with vertices *a*, *b*, *c*, and *d*, and edges (*a*, *b*), (*a*, *d*), (*b*, *b*), (*b*, *d*), (*c*, a), (*c, b*), and (*d*, *b*) is shown here.

Examples of Digraphs Representing Relations

Example 8: What are the ordered pairs in the relation represented by this directed graph?

Solution: The ordered pairs in the relation are $(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3),$ (4, 1), and (4, 3)

- *Reflexivity*: A loop must be present at all vertices in the graph.
- *Symmetry*: If (*x,y*) is an edge, then so is (*y,x*)*.*
- Antisymmetry: If (x, y) with $x \neq y$ is an edge, then (y, x) is not an edge.
- *Transitivity*: If (*x,y*) and (*y,z*) are edges, then so is (*x,z*)*.*

- *Reflexive?* No, not every vertex has a loop
- *Symmetric?* Yes (trivially), there is no edge from one vertex to another
- *Antisymmetric?* Yes (trivially), there is no edge from one vertex to another
- *Transitive?* Yes, (trivially) since there is no edge from one vertex to another

- *Reflexive?* No, there are no loops
- *Symmetric?* No, there is an edge from *a* to *b*, but not from *b* to *a*
- *Antisymmetric?* No, there is an edge from *d* to *b* and *b* to *d*
- *Transitive?* No, there are edges from *a* to *c* and from *c* to *b*, but there is no edge from *a* to *d*

Reflexive? No, there are no loops *Symmetric?* No, for example, there is no edge from *c* to *a Antisymmetric?* Yes, whenever there is an edge from one vertex to another, there is not one going back *Transitive?* Yes, there is an edge from *a* to *b*

- *Reflexive?* No, there are no loops
- *Symmetric?* No, for example, there is no edge from *d* to *a*
- *Antisymmetric?* Yes, whenever there is an edge from one vertex to another, there is not one going back
- *Transitive?* Yes (trivially), there are no two edges where the first edge ends at the vertex where the second edge begins

Equivalence Relations Section 9.5

Equivalence Relations

Definition 1: A relation on a set *A* is called an *equivalence relation* if it is reflexive, symmetric, and transitive.

Determine whether the relation with the directed graph shown is an equivalence relation.

- The relation in part (a) is not equivalence, since it is not transitive as the pairs (c,a) and (a,d) exist but the pair (c,d) is not exist.
- The relation in part (b) is equivalence, since it is reflexive, symmetric, and transitive.

Partial Orderings Section 9.6

Partial Orderings

Definition 1: A relation *R* on a set S is called a *partial ordering,* or *partial order,* if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering *R* is called a *partially ordered set*, or *poset*, and is denoted by (*S*, *R*). Members of *S* are called *elements* of the poset.

Determine whether the relations represented by these zero–one matrices are partial orders.

- a) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ **b**) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ **c**) $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$
- The relation in part (a) is not partial order, because the relation is not antisymmetric since the item (1,2) and the item $(2,1)$ are exist.
- The relation in part (b) is partial order, since the relation is reflexive, antisymmetric, and transitive.
- The relation in part (c) is not partial order, because the relation is not transitive, as the pairs $(1,3)$ and $(3,4)$ exists but the pair $(1,4)$ is not exists.