
Fourier transform
CH5



• Periodic signal can be presented by Fourier series .

• Can we present a Non periodic signal (aperiodic signal ) as Fourier 
series ?

• Try this : take a peridic signal and make T -> infinity 









• it is evident that as T increases (the fundamental frequency ω0 = 
2π/T decreases),

• the samples of TDn become closer and closer. 

• As T becomes very large, the original periodic square wave becomes a 
rectangular pulse. As T → ∞, TDn becomes continuous.







the summation becomes an integration. 



called Fourier transform pair

analysis 
equation

synthesis 
equation



• The time function x(t) is always denoted by a lower case letter and 
the frequency function X( jω) by a capital letter. 

• Further, when x(t) is Fourier transformed, it becomes complex and so 
it is denoted as X( jω). 

• In some literature, X( jω) is also represented simply as X(ω).



Fourier Spectra



Find the Fourier transform of the following time 
functions and sketch their Fourier spectra 
(amplitude and phase).

















Find FT of the signal: 



Frequency spectra 



















Properties of Fourier Transform



Linearity



Time Shifting



Conjugation and Conjugation Symmetry



Differentiation in Time



Differentiation in Frequency



Time Integration



Time Scaling



Frequency Shifting



Duality



The Convolution



Parseval’s Theorem 







Find the Fourier transform









Fourier Transform Using Differentiation and
Integration Properties





• Differentiate to get the simplest FT. 

• Find FT of the nth derivative 

• Divide by 𝑗𝜔 n times 



































Using Fourier transform properties, find the Fourier transform 
of the signal shown by using
(a) Time shifting and (b) Differentiation and integration.





Method 1: Time Shifting Property



Method 2: Using Differentiation and 
Integration Properties





Find the Fourier transform of the impulse 
train







find the Fourier transform using 
differentiation and integration properties.













Method 2 



• See example 6.23 for more applications









Find the inverse Fourier transform of the 
following functions:





















Find the Fourier transform of the following 
signals using convolution theorem.









the “Modulation” property which states that
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