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46. Two derivations of the identity sec−1(−x) = P − sec−1 x

a. (Geometric) Here is a pictorial proof that sec-1(-x) =
p - sec-1 x. See if you can tell what is going on.

x

y

0

p

1 x−1−x

y = sec–1x

p
2

b. (Algebraic) Derive the identity sec-1(-x) = p - sec-1 x by 
combining the following two equations from the text:

cos-1(-x) = p - cos-1 x Eq. (4), Section 1.6

sec-1 x = cos-1(1>x) Eq. (1)

Which of the expressions in Exercises 47–50 are defined, and which 
are not? Give reasons for your answers.

47. a. tan-1 2 b. cos-1 2

48. a. csc-1 (1>2) b. csc-1 2

49. a. sec-1 0 b. sin-122

50. a. cot-1 (-1>2) b. cos-1(-5)

51. Use the identity

csc-1 u = p
2

- sec-1 u

  to derive the formula for the derivative of csc-1 u in Table 3.1 
from the formula for the derivative of sec-1 u.

52. Derive the formula

dy
dx

= 1
1 + x2

  for the derivative of y = tan-1 x by differentiating both sides of 
the equivalent equation tan y = x.

53. Use the Derivative Rule in Section 3.8, Theorem 3, to derive

d
dx

sec-1 x = 1

0 x 02x2 - 1
, 0 x 0 7 1.

54. Use the identity

cot-1 u = p
2

- tan-1 u

  to derive the formula for the derivative of cot-1 u in Table 3.1 
from the formula for the derivative of tan-1 u.

55. What is special about the functions

ƒ(x) = sin-1 x - 1
x + 1

, x Ú 0, and g(x) = 2 tan-1 1x?

  Explain.

56. What is special about the functions

ƒ(x) = sin-1 1

2x2 + 1
and g(x) = tan-1 1

x?

  Explain.

57. Find the values of

a. sec-1 1.5 b. csc-1 (-1.5) c. cot-1 2

58. Find the values of

a. sec-1(-3) b. csc-1 1.7 c. cot-1 (-2)

In Exercises 59–61, find the domain and range of each composite 
function. Then graph the composites on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

59. a. y = tan-1(tan x) b. y = tan (tan-1 x)

60. a. y = sin-1(sin x) b. y = sin (sin-1 x)

61. a. y = cos-1(cos x) b. y = cos (cos-1 x)

Use your graphing utility for Exercises 62–66.

62. Graph y = sec (sec-1 x) = sec (cos-1(1>x)). Explain what you 
see.

63. Newton’s serpentine Graph Newton’s serpentine, y = 4x>(x2 + 1).
Then graph y = 2 sin (2 tan-1 x) in the same graphing window. 
What do you see? Explain.

64. Graph the rational function y = (2 - x2)>x2. Then graph y =
cos (2 sec-1 x) in the same graphing window. What do you see? 
Explain.

65. Graph ƒ(x) = sin-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

66. Graph ƒ(x) = tan-1 x together with its first two derivatives. Com-
ment on the behavior of ƒ and the shape of its graph in relation to 
the signs and values of ƒ′ and ƒ″.

T

T

T

T

3.10 Related Rates

In this section we look at problems that ask for the rate at which some variable changes 
when it is known how the rate of some other related variable (or perhaps several variables) 
changes. The problem of finding a rate of change from other known rates of change is 
called a related rates problem.
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Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the 
balloon are increasing over time. If V is the volume and r is the radius of the balloon at an 
instant of time, then

V = 4
3pr3.

Using the Chain Rule, we differentiate both sides with respect to t to find an equation 
relating the rates of change of V and r,

dV
dt

= dV
dr

dr
dt

= 4pr2 dr
dt

.

So if we know the radius r of the balloon and the rate dV>dt at which the volume is 
increasing at a given instant of time, then we can solve this last equation for dr>dt to find 
how fast the radius is increasing at that instant. Note that it is easier to directly measure the 
rate of increase of the volume (the rate at which air is being pumped into the balloon) than 
it is to measure the increase in the radius. The related rates equation allows us to calculate 
dr>dt from dV>dt.

Very often the key to relating the variables in a related rates problem is drawing a picture 
that shows the geometric relations between them, as illustrated in the following example.

EXAMPLE 1  Water runs into a conical tank at the rate of 9 ft3>min. The tank stands 
point down and has a height of 10 ft and a base radius of 5 ft. How fast is the water level 
rising when the water is 6 ft deep?

Solution Figure 3.44 shows a partially filled conical tank. The variables in the problem are

V = volume (ft3) of the water in the tank at time t (min)

x = radius (ft) of the surface of the water at time t

y = depth (ft) of the water in the tank at time t.

We assume that V, x, and y are differentiable functions of t. The constants are the dimen-
sions of the tank. We are asked for dy>dt when

y = 6 ft and
dV
dt

= 9 ft3>min.

The water forms a cone with volume

V = 1
3px2y.

This equation involves x as well as V and y. Because no information is given about x and 
dx>dt at the time in question, we need to eliminate x. The similar triangles in Figure 3.44 
give us a way to express x in terms of y:

x
y = 5

10
or x =

y
2

.

Therefore, we find

V = 1
3p a

y
2
b2

y = p
12

y3

to give the derivative

dV
dt

= p
12

# 3y2
dy
dt

= p
4

y2
dy
dt

.

10 ft

y

5 ft

x
dy
dt

= ?

when y = 6 ft

dV
dt

= 9 ft3�min

FIGURE 3.44 The geometry of the 
conical tank and the rate at which water 
fills the tank determine how fast the water 
level rises (Example 1).
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Finally, use y = 6 and dV>dt = 9 to solve for dy>dt.

9 = p
4

(6)2
dy
dt

dy
dt

= 1
p ≈ 0.32

At the moment in question, the water level is rising at about 0.32 ft>min.

Related Rates Problem Strategy
1. Draw a picture and name the variables and constants. Use t for time. Assume 

that all variables are differentiable functions of t.

2. Write down the numerical information (in terms of the symbols you have chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two 
or more equations to get a single equation that relates the variable whose rate 
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the 
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

EXAMPLE 2  A hot air balloon rising straight up from a level field is tracked by a 
range finder 150 m from the liftoff point. At the moment the range finder’s elevation angle 
is p>4, the angle is increasing at the rate of 0.14 rad >min. How fast is the balloon rising at 
that moment?

Solution We answer the question in the six strategy steps.

1. Draw a picture and name the variables and constants (Figure 3.45). The variables in 
the picture are

u = the angle in radians the range finder makes with the ground.

y = the height in meters of the balloon above the ground.

We let t represent time in minutes and assume that u and y are differentiable functions of t.
The one constant in the picture is the distance from the range finder to the liftoff point 

(150 m). There is no need to give it a special symbol.

2. Write down the additional numerical information.

du
dt

= 0.14 rad>min when u = p
4

3. Write down what we are to find. We want dy>dt when u = p>4.

4. Write an equation that relates the variables y and u.
y

150
= tan u or y = 150 tan u

5. Differentiate with respect to t using the Chain Rule. The result tells how dy>dt (which 
we want) is related to du>dt (which we know).

dy
dt

= 150 (sec2u)
du
dt

6. Evaluate with u = p>4 and du>dt = 0.14 to find dy>dt.

dy
dt

= 150122 22(0.14) = 42 sec
p

4
= 22

At the moment in question, the balloon is rising at the rate of 42 m>min.

= ?
y

Range
finder

Balloon

150 m

u

= 0.14  rad�min
dt
du

when u = p�4
dt
dywhen u = p�4

FIGURE 3.45 The rate of change of the 
balloon’s height is related to the rate of 
change of the angle the range finder makes 
with the ground (Example 2).
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EXAMPLE 3  A police cruiser, approaching a right-angled intersection from the north, 
is chasing a speeding car that has turned the corner and is now moving straight east. When 
the cruiser is 0.6 mi north of the intersection and the car is 0.8 mi to the east, the police deter-
mine with radar that the distance between them and the car is increasing at 20 mph. If the 
cruiser is moving at 60 mph at the instant of measurement, what is the speed of the car?

Solution We picture the car and cruiser in the coordinate plane, using the positive x-axis 
as the eastbound highway and the positive y-axis as the southbound highway (Figure 3.46). 
We let t represent time and set

x = position of car at time t

y = position of cruiser at time t

s = distance between car and cruiser at time t.

We assume that x, y, and s are differentiable functions of t.
We want to find dx>dt when

x = 0.8 mi, y = 0.6 mi,
dy
dt

= -60 mph,
ds
dt

= 20 mph.

Note that dy>dt is negative because y is decreasing.
We differentiate the distance equation between the car and the cruiser,

s2 = x2 + y2

(we could also use s = 2x2 + y2), and obtain

2s
ds
dt

= 2x
dx
dt

+ 2y
dy
dt

ds
dt

= 1
s ax dx

dt
+ y

dy
dt
b

= 1

2x2 + y2
ax dx

dt
+ y

dy
dt
b .

Finally, we use x = 0.8, y = 0.6, dy>dt = -60, ds>dt = 20, and solve for dx>dt.

20 = 1

2(0.8)2 + (0.6)2
a0.8

dx
dt

+ (0.6)(-60)b
dx
dt

=
202(0.8)2 + (0.6)2 + (0.6)(60)

0.8
= 70

At the moment in question, the car’s speed is 70 mph.

EXAMPLE 4  A particle P moves clockwise at a constant rate along a circle of radius 
10 m centered at the origin. The particle’s initial position is (0, 10) on the y-axis, and its 
final destination is the point (10, 0) on the x-axis. Once the particle is in motion, the tan-
gent line at P intersects the x-axis at a point Q (which moves over time). If it takes the 
particle 30 sec to travel from start to finish, how fast is the point Q moving along the x-axis
when it is 20 m from the center of the circle?

Solution We picture the situation in the coordinate plane with the circle centered at the 
origin (see Figure 3.47). We let t represent time and let u denote the angle from the x-axis
to the radial line joining the origin to P. Since the particle travels from start to finish in 
30 sec, it is traveling along the circle at a constant rate of p>2 radians in 1>2 min, or 
p rad>min. In other words, du>dt = -p, with t being measured in minutes. The negative 
sign appears because u is decreasing over time.

x

y

0 x

y

Situation when
x = 0.8, y = 0.6

= −60

= 20

= ?dx
dt

dy
dt

ds
dt

FIGURE 3.46 The speed of the car is 
related to the speed of the police cruiser 
and the rate of change of the distance s
between them (Example 3).

x
0

10

u

y

P

Q

(x, 0)

FIGURE 3.47 The particle P
travels clockwise along the circle 
(Example 4).
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Setting x(t) to be the distance at time t from the point Q to the origin, we want to find 
dx>dt when

x = 20 m and
du
dt

= -p rad>min.

To relate the variables x and u, we see from Figure 3.47 that x cos u = 10, or 
x = 10 sec u. Differentiation of this last equation gives

dx
dt

= 10 sec u tan u   
du
dt

= -10p sec u tan u.

Note that dx>dt is negative because x is decreasing (Q is moving toward the origin).
When x = 20, cos u = 1>2 and sec u = 2. Also, tan u = 2sec2u - 1 = 23. It 

follows that

dx
dt

= (-10p)(2)1232 = -2023p.

At the moment in question, the point Q is moving toward the origin at the speed of 
2023p ≈ 109 m>min.

EXAMPLE 5  A jet airliner is flying at a constant altitude of 12,000 ft above sea level 
as it approaches a Pacific island. The aircraft comes within the direct line of sight of a 
radar station located on the island, and the radar indicates the initial angle between sea 
level and its line of sight to the aircraft is 30°. How fast (in miles per hour) is the aircraft 
approaching the island when first detected by the radar instrument if it is turning upward 
(counterclockwise) at the rate of 2>3 deg>sec in order to keep the aircraft within its direct 
line of sight?

Solution The aircraft A and radar station R are pictured in the coordinate plane, using 
the positive x-axis as the horizontal distance at sea level from R to A, and the positive 
y-axis as the vertical altitude above sea level. We let t represent time and observe that 
y = 12,000 is a constant. The general situation and line-of-sight angle u are depicted in 
Figure 3.48. We want to find dx>dt when u = p>6 rad and du>dt = 2>3 deg>sec.

From Figure 3.48, we see that

12,000
x = tan u or x = 12,000 cot u.

Using miles instead of feet for our distance units, the last equation translates to

x =
12,000
5280

 cot u.

Differentiation with respect to t gives

dx
dt

= - 1200
528

 csc2u  
du
dt

.

When u = p>6, sin2 u = 1>4, so csc2 u = 4. Converting du>dt = 2>3 deg>sec to radi-
ans per hour, we find

du
dt

= 2
3 a p180

b (3600) rad>hr. 1 hr = 3600 sec, 1 deg = p>180 rad

Substitution into the equation for dx>dt then gives

dx
dt

= a- 1200
528
b (4)a23b a p180

b (3600) ≈ -380.

The negative sign appears because the distance x is decreasing, so the aircraft is approach-
ing the island at a speed of approximately 380 mi>hr when first detected by the radar.

R

12,000

A

u
x

FIGURE 3.48 Jet airliner A
traveling at constant altitude 
toward radar station R
(Example 5).
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EXAMPLE 6  Figure 3.49a shows a rope running through a pulley at P and bearing a 
weight W at one end. The other end is held 5 ft above the ground in the hand M of 
a worker. Suppose the pulley is 25 ft above ground, the rope is 45 ft long, and the worker 
is walking rapidly away from the vertical line PW at the rate of 4 ft>sec. How fast is the 
weight being raised when the worker’s hand is 21 ft away from PW?

Solution We let OM be the horizontal line of length x ft from a point O directly below 
the pulley to the worker’s hand M at any instant of time (Figure 3.49). Let h be the height 
of the weight W above O, and let z denote the length of rope from the pulley P to the 
worker’s hand. We want to know dh>dt when x = 21 given that dx>dt = 4. Note that the 
height of P above O is 20 ft because O is 5 ft above the ground. We assume the angle at O
is a right angle.

At any instant of time t we have the following relationships (see Figure 3.49b):

 20 - h + z = 45 Total length of rope is 45 ft.

 202 + x2 = z2. Angle at O is a right angle.

If we solve for z = 25 + h in the first equation, and substitute into the second equation, 
we have

202 + x2 = (25 + h)2. (1)

Differentiating both sides with respect to t gives

2x  
dx
dt

= 2(25 + h)  
dh
dt

,

and solving this last equation for dh>dt we find

dh
dt

= x
25 + h

  
dx
dt

. (2)

Since we know dx>dt, it remains only to find 25 + h at the instant when x = 21. From 
Equation (1),

202 + 212 = (25 + h)2

so that

(25 + h)2 = 841, or 25 + h = 29.

Equation (2) now gives

dh
dt

= 21
29

# 4 = 84
29

≈ 2.9 ft>sec

as the rate at which the weight is being raised when x = 21 ft.

x

M

P

O

W

5 ft

(a)

= 4 ft�secdx
dt

x

z

h

M

P

O

W
20 ft

(b)

= ?dh
dt

FIGURE 3.49 A worker at M
walks to the right, pulling the 
weight W upward as the rope 
moves through the pulley P
(Example 6).

1. Area Suppose that the radius r and area A = pr2 of a circle are 
differentiable functions of t. Write an equation that relates dA>dt
to dr>dt.

2. Surface area Suppose that the radius r and surface area S = 4pr2

of a sphere are differentiable functions of t. Write an equation that 
relates dS>dt to dr>dt.

3. Assume that y = 5x and dx>dt = 2. Find dy>dt.

4. Assume that 2x + 3y = 12 and dy>dt = -2. Find dx>dt.

5. If y = x2 and dx>dt = 3, then what is dy>dt when x = -1?

6. If x = y3 - y and dy>dt = 5, then what is dx>dt when y = 2?

7. If x2 + y2 = 25 and dx>dt = -2, then what is dy>dt when 
x = 3 and y = -4?

8. If x2y3 = 4>27 and dy>dt = 1>2, then what is dx>dt when 
x = 2?

9. If L = 2x2 + y2, dx>dt = -1, and dy>dt = 3, find dL>dt
when x = 5 and y = 12.

10. If r + s2 + y3 = 12, dr>dt = 4, and ds>dt = -3, find dy>dt
when r = 3 and s = 1.

Exercises 3.10
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11. If the original 24 m edge length x of a cube decreases at the rate 
of 5 m>min, when x = 3 m at what rate does the cube’s

a. surface area change?

b. volume change?

12. A cube’s surface area increases at the rate of 72 in2>sec. At what rate 
is the cube’s volume changing when the edge length is x = 3 in?

13. Volume The radius r and height h of a right circular cylinder 
are related to the cylinder’s volume V by the formula V = pr2h.

a. How is dV>dt related to dh>dt if r is constant?

b. How is dV>dt related to dr>dt if h is constant?

c. How is dV>dt related to dr>dt and dh>dt if neither r nor h is 
constant?

14. Volume The radius r and height h of a right circular cone are 
related to the cone’s volume V by the equation V = (1>3)pr2h.

a. How is dV>dt related to dh>dt if r is constant?

b. How is dV>dt related to dr>dt if h is constant?

c. How is dV>dt related to dr>dt and dh>dt if neither r nor h is 
constant?

15. Changing voltage The voltage V (volts), current I (amperes), 
and resistance R (ohms) of an electric circuit like the one shown 
here are related by the equation V = IR. Suppose that V is 
increasing at the rate of 1 volt>sec while I is decreasing at the 
rate of 1>3 amp>sec. Let t denote time in seconds.

V

R

I

+ −

a. What is the value of dV>dt?

b. What is the value of dI>dt?

c. What equation relates dR>dt to dV>dt and dI>dt?

d. Find the rate at which R is changing when V = 12 volts and 
I = 2 amps. Is R increasing, or decreasing?

16. Electrical power The power P (watts) of an electric circuit is 
related to the circuit’s resistance R (ohms) and current I (amperes) 
by the equation P = RI2.

a. How are dP>dt, dR>dt, and dI>dt related if none of P, R, and 
I are constant?

b. How is dR>dt related to dI>dt if P is constant?

17. Distance Let x and y be differentiable functions of t and let 
s = 2x2 + y2 be the distance between the points (x, 0) and 
(0, y) in the xy-plane.

a. How is ds>dt related to dx>dt if y is constant?

b. How is ds>dt related to dx>dt and dy>dt if neither x nor y is 
constant?

c. How is dx>dt related to dy>dt if s is constant?

18. Diagonals If x, y, and z are lengths of the edges of a rectangular 
box, the common length of the box’s diagonals is s =
2x2 + y2 + z2.

a. Assuming that x, y, and z are differentiable functions of t,
how is ds>dt related to dx>dt, dy>dt, and dz>dt?

b. How is ds>dt related to dy>dt and dz>dt if x is constant?

c. How are dx>dt, dy>dt, and dz>dt related if s is constant?

19. Area The area A of a triangle with sides of lengths a and b
enclosing an angle of measure u is

A = 1
2

ab sin u.

a. How is dA>dt related to du>dt if a and b are constant?

b. How is dA>dt related to du>dt and da>dt if only b is constant?

c. How is dA>dt related to du>dt, da>dt, and db>dt if none of 
a, b, and u are constant?

20. Heating a plate When a circular plate of metal is heated in an 
oven, its radius increases at the rate of 0.01 cm >min. At what rate 
is the plate’s area increasing when the radius is 50 cm?

21. Changing dimensions in a rectangle The length l of a rectan-
gle is decreasing at the rate of 2 cm>sec while the width w is 
increasing at the rate of 2 cm>sec. When l = 12 cm and 
w = 5 cm, find the rates of change of (a) the area, (b) the perim-
eter, and (c) the lengths of the diagonals of the rectangle. Which 
of these quantities are decreasing, and which are increasing?

22. Changing dimensions in a rectangular box Suppose that the 
edge lengths x, y, and z of a closed rectangular box are changing 
at the following rates:

dx
dt

= 1 m>sec,
dy
dt

= -2 m>sec,
dz
dt

= 1 m>sec.

  Find the rates at which the box’s (a) volume, (b) surface area, and 
(c) diagonal length s = 2x2 + y2 + z2 are changing at the 
instant when x = 4, y = 3, and z = 2.

23. A sliding ladder A 13-ft ladder is leaning against a house when 
its base starts to slide away (see accompanying figure). By the 
time the base is 12 ft from the house, the base is moving at the 
rate of 5 ft>sec.

a. How fast is the top of the ladder sliding down the wall then?

b. At what rate is the area of the triangle formed by the ladder, 
wall, and ground changing then?

c. At what rate is the angle u between the ladder and the ground 
changing then?

x
0

y

13-ft ladder

y(t)

x(t)

u

24. Commercial air traffic Two commercial airplanes are flying 
at an altitude of 40,000 ft along straight-line courses that intersect 
at right angles. Plane A is approaching the intersection point at a 
speed of 442 knots (nautical miles per hour; a nautical mile is 
2000 yd). Plane B is approaching the intersection at 481 knots. At 
what rate is the distance between the planes changing when A is 5 
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nautical miles from the intersection point and B is 12 nautical 
miles from the intersection point?

25. Flying a kite A girl flies a kite at a height of 300 ft, the wind car-
rying the kite horizontally away from her at a rate of 25 ft>sec. How 
fast must she let out the string when the kite is 500 ft away from her?

26. Boring a cylinder The mechanics at Lincoln Automotive are 
reboring a 6-in.-deep cylinder to fit a new piston. The machine 
they are using increases the cylinder’s radius one-thousandth of 
an inch every 3 min. How rapidly is the cylinder volume increas-
ing when the bore (diameter) is 3.800 in.?

27. A growing sand pile Sand falls from a conveyor belt at the rate 
of 10 m3>min onto the top of a conical pile. The height of the pile 
is always three-eighths of the base diameter. How fast are the (a)
height and (b) radius changing when the pile is 4 m high? Answer 
in centimeters per minute.

28. A draining conical reservoir Water is flowing at the rate of 
50 m3>min from a shallow concrete conical reservoir (vertex 
down) of base radius 45 m and height 6 m.

a. How fast (centimeters per minute) is the water level falling 
when the water is 5 m deep?

b. How fast is the radius of the water’s surface changing then? 
Answer in centimeters per minute.

29. A draining hemispherical reservoir Water is flowing at the 
rate of 6 m3>min from a reservoir shaped like a hemispherical bowl 
of radius 13 m, shown here in profile. Answer the following ques-
tions, given that the volume of water in a hemispherical bowl of 
radius R is V = (p>3)y2(3R - y) when the water is y meters deep.

r

y

13

Center of sphere

Water level

a. At what rate is the water level changing when the water is 
8 m deep?

b. What is the radius r of the water’s surface when the water is 
y m deep?

c. At what rate is the radius r changing when the water is 8 m deep?

30. A growing raindrop Suppose that a drop of mist is a perfect 
sphere and that, through condensation, the drop picks up moisture 
at a rate proportional to its surface area. Show that under these 
circumstances the drop’s radius increases at a constant rate.

31. The radius of an inflating balloon A spherical balloon is 
inflated with helium at the rate of 100p ft3>min. How fast is the 
balloon’s radius increasing at the instant the radius is 5 ft? How 
fast is the surface area increasing?

32. Hauling in a dinghy A dinghy is pulled toward a dock by a 
rope from the bow through a ring on the dock 6 ft above the bow. 
The rope is hauled in at the rate of 2 ft>sec.

a. How fast is the boat approaching the dock when 10 ft of rope 
are out?

b. At what rate is the angle u changing at this instant (see the 
figure)?

Ring at edge
of dock

6'

u

33. A balloon and a bicycle A balloon is rising vertically above a 
level, straight road at a constant rate of 1 ft>sec. Just when the 
balloon is 65 ft above the ground, a bicycle moving at a constant 
rate of 17 ft>sec passes under it. How fast is the distance s(t)
between the bicycle and balloon increasing 3 sec later?

y

x
0

y(t)

s(t)

x(t)

34. Making coffee Coffee is draining from a conical filter into a 
cylindrical coffeepot at the rate of 10 in3>min.

a. How fast is the level in the pot rising when the coffee in the 
cone is 5 in. deep?

b. How fast is the level in the cone falling then?

6″

6″

6″

How fast
is this
level rising?

How fast
is this
level falling?
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35. Cardiac output In the late 1860s, Adolf Fick, a professor of 
physiology in the Faculty of Medicine in Würzberg, Germany, 
developed one of the methods we use today for measuring how 
much blood your heart pumps in a minute. Your cardiac output as 
you read this sentence is probably about 7 L>min. At rest it is 
likely to be a bit under 6 L>min. If you are a trained marathon 
runner running a marathon, your cardiac output can be as high as 
30 L>min.

    Your cardiac output can be calculated with the formula

y =
Q
D

,

  where Q is the number of milliliters of CO2 you exhale in a minute 
and D is the difference between the CO2 concentration (ml>L) in 
the blood pumped to the lungs and the CO2 concentration in the 
blood returning from the lungs. With Q = 233 ml>min and 
D = 97 - 56 = 41 ml>L,

y =
233 ml>min

41 ml>L ≈ 5.68 L>min,

  fairly close to the 6 L>min that most people have at basal (rest-
ing) conditions. (Data courtesy of J. Kenneth Herd, M.D., Quillan 
College of Medicine, East Tennessee State University.)

    Suppose that when Q = 233 and D = 41, we also know 
that D is decreasing at the rate of 2 units a minute but that Q
remains unchanged. What is happening to the cardiac output?

36. Moving along a parabola A particle moves along the parabola 
y = x2 in the first quadrant in such a way that its x-coordinate
(measured in meters) increases at a steady 10 m>sec. How fast is 
the angle of inclination u of the line joining the particle to the 
origin changing when x = 3 m?

37. Motion in the plane The coordinates of a particle in the metric 
xy-plane are differentiable functions of time t with dx>dt =
-1 m>sec and dy>dt = -5 m>sec. How fast is the particle’s dis-
tance from the origin changing as it passes through the point 
(5, 12)?

38. Videotaping a moving car You are videotaping a race from a 
stand 132 ft from the track, following a car that is moving at  
180 mi>h (264 ft>sec), as shown in the accompanying figure. 
How fast will your camera angle u be changing when the car is 
right in front of you? A half second later?

u

Car

Camera

132′

39. A moving shadow A light shines from the top of a pole 50 ft 
high. A ball is dropped from the same height from a point 30 ft 
away from the light. (See accompanying figure.) How fast is the 
shadow of the ball moving along the ground 1>2 sec later? 
(Assume the ball falls a distance s = 16t2 ft in t sec.)

x

Light

30

Shadow

0

50-ft
pole

Ball at time t = 0 

1/2 sec later

x(t)

40. A building’s shadow On a morning of a day when the sun will 
pass directly overhead, the shadow of an 80-ft building on level 
ground is 60 ft long. At the moment in question, the angle u the 
sun makes with the ground is increasing at the rate of 0.27°>min.
At what rate is the shadow decreasing? (Remember to use radians. 
Express your answer in inches per minute, to the nearest tenth.)

80′

u

41. A melting ice layer A spherical iron ball 8 in. in diameter is 
coated with a layer of ice of uniform thickness. If the ice melts at 
the rate of 10 in3>min, how fast is the thickness of the ice 
decreasing when it is 2 in. thick? How fast is the outer surface 
area of ice decreasing?

42. Highway patrol A highway patrol plane flies 3 mi above a 
level, straight road at a steady 120 mi>h. The pilot sees an 
oncoming car and with radar determines that at the instant the 
line-of-sight distance from plane to car is 5 mi, the line-of-sight 
distance is decreasing at the rate of 160 mi>h. Find the car’s 
speed along the highway.

43. Baseball players A baseball diamond is a square 90 ft on a 
side. A player runs from first base to second at a rate of 16 ft>sec.

a. At what rate is the player’s distance from third base changing 
when the player is 30 ft from first base?

b. At what rates are angles u1 and u2 (see the figure) changing 
at that time?
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c. The player slides into second base at the rate of 15 ft>sec. At 
what rates are angles u1 and u2 changing as the player 
touches base?

90′

Second base

Player

Home

30′ First
base

Third
base

u1

u2

44. Ships Two ships are steaming straight away from a point O
along routes that make a 120° angle. Ship A moves at 14 knots 
(nautical miles per hour; a nautical mile is 2000 yd). Ship B
moves at 21 knots. How fast are the ships moving apart when 
OA = 5 and OB = 3 nautical miles?

45. Clock’s moving hands At what rate is the angle between a 
clock’s minute and hour hands changing at 4 o’clock in the after-
noon?

46. Oil spill An explosion at an oil rig located in gulf waters causes 
an elliptical oil slick to spread on the surface from the rig. The slick 
is a constant 9 in. thick. After several days, when the major axis of 
the slick is 2 mi long and the minor axis is 3/4 mi wide, it is deter-
mined that its length is increasing at the rate of 30 ft/hr, and its 
width is increasing at the rate of 10 ft/hr. At what rate (in cubic feet 
per hour) is oil flowing from the site of the rig at that time?

3.11 Linearization and Differentials

Sometimes we can approximate complicated functions with simpler ones that give the 
accuracy we want for specific applications and are easier to work with. The approximating 
functions discussed in this section are called linearizations, and they are based on tangent 
lines. Other approximating functions, such as polynomials, are discussed in Chapter 10.

We introduce new variables dx and dy, called differentials, and define them in a way that 
makes Leibniz’s notation for the derivative dy>dx a true ratio. We use dy to estimate error in 
measurement, which then provides for a precise proof of the Chain Rule (Section 3.6).

Linearization

As you can see in Figure 3.50, the tangent to the curve y = x2 lies close to the curve near 
the point of tangency. For a brief interval to either side, the y-values along the tangent line 

4

0
3−1

2

0
20

y = x2 and its tangent y = 2x − 1 at (1, 1). Tangent and curve very close near (1, 1).

1.2

0.8
1.20.8

1.003

0.997
1.0030.997

Tangent and curve very close throughout
entire x-interval shown.

Tangent and curve closer still. Computer
screen cannot distinguish tangent from
curve on this x-interval.

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

y = x2

y = 2x − 1

(1, 1)

FIGURE 3.50 The more we magnify the graph of a function near a point where the func-
tion is differentiable, the flatter the graph becomes and the more it resembles its tangent.
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