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Overview One of the most important applications of the derivative is its use as a tool for 
finding the optimal (best) solutions to problems. Optimization problems abound in math-
ematics, physical science and engineering, business and economics, and biology and 
medicine. For example, what are the height and diameter of the cylinder of largest volume 
that can be inscribed in a given sphere? What are the dimensions of the strongest rectangu-
lar wooden beam that can be cut from a cylindrical log of given diameter? Based on pro-
duction costs and sales revenue, how many items should a manufacturer produce to maxi-
mize profit? How much does the trachea (windpipe) contract to expel air at the maximum 
speed during a cough? What is the branching angle at which blood vessels minimize the 
energy loss due to friction as blood flows through the branches?

In this chapter we use derivatives to find extreme values of functions, to determine 
and analyze the shapes of graphs, and to solve equations numerically. We also introduce 
the idea of recovering a function from its derivative. The key to many of these applications 
is the Mean Value Theorem, which paves the way to integral calculus.

4.1 extreme values of Functions

This section shows how to locate and identify extreme (maximum or minimum) values of 
a function from its derivative. Once we can do this, we can solve a variety of optimization 
problems (see Section 4.6). The domains of the functions we consider are intervals or 
unions of separate intervals.

Applications of 
Derivatives

4

DeFinitiOns Let ƒ be a function with domain D. Then ƒ has an absolute 
maximum value on D at a point c if

ƒ(x) … ƒ(c)  for all x in D

and an absolute minimum value on D at c if

ƒ(x) Ú ƒ(c)  for all x in D.

Maximum and minimum values are called extreme values of the function ƒ. Absolute 
maxima or minima are also referred to as global maxima or minima.

For example, on the closed interval 3-p>2, p>24  the function ƒ(x) = cos x takes on 
an absolute maximum value of 1 (once) and an absolute minimum value of 0 (twice). On 
the same interval, the function g(x) = sin x takes on a maximum value of 1 and a mini-
mum value of -1 (Figure 4.1).

Functions with the same defining rule or formula can have different extrema (maximum 
or minimum values), depending on the domain. We see this in the following example.

Figure 4.1 Absolute extrema 
for the sine and cosine functions on 
3-p>2, p>24 . These values can depend 
on the domain of a function.
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ExamplE 1  The absolute extrema of the following functions on their domains can 
be seen in Figure 4.2. Each function has the same defining equation, y = x2, but the 
domains vary. Notice that a function might not have a maximum or minimum if the 
domain is unbounded or fails to contain an endpoint.

The proof of the Extreme Value Theorem requires a detailed knowledge of the real 
number system (see Appendix 7) and we will not give it here. Figure 4.3 illustrates possi-
ble locations for the absolute extrema of a continuous function on a closed interval 3a, b4 . 
As we observed for the function y = cos x, it is possible that an absolute minimum (or 
absolute maximum) may occur at two or more different points of the interval.

The requirements in Theorem 1 that the interval be closed and finite, and that the 
function be continuous, are key ingredients. Without them, the conclusion of the theorem 

Figure 4.2 Graphs for Example 1.
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Function rule Domain D Absolute extrema on D

(a) y = x2 (-q, q) No absolute maximum

  Absolute minimum of 0 at x = 0

(b) y = x2 30, 24  Absolute maximum of 4 at x = 2

  Absolute minimum of 0 at x = 0

(c) y = x2 (0, 24  Absolute maximum of 4 at x = 2

  No absolute minimum

(d) y = x2 (0, 2) No absolute extrema

theorem 1—the extreme Value theorem If ƒ is continuous on a closed 
interval 3a, b4 , then ƒ attains both an absolute maximum value M and an abso-
lute minimum value m in 3a, b4 . That is, there are numbers x1 and x2 in 3a, b4  
with ƒ(x1) = m, ƒ(x2) = M, and m … ƒ(x) … M  for every other x in 3a, b4 .

Some of the functions in Example 1 did not have a maximum or a minimum value. 
The following theorem asserts that a function which is continuous over (or on) a finite 
closed interval 3a, b4  has an absolute maximum and an absolute minimum value on the 
interval. We look for these extreme values when we graph a function.
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need not hold. Example 1 shows that an absolute extreme value may not exist if the inter-
val fails to be both closed and finite. The exponential function y = ex over (-q, q) 
shows that neither extreme value need exist on an infinite interval. Figure 4.4 shows that 
the continuity requirement cannot be omitted.

Local (relative) extreme values

Figure 4.5 shows a graph with five points where a function has extreme values on its 
domain 3a, b4 . The function’s absolute minimum occurs at a even though at e the func-
tion’s value is smaller than at any other point nearby. The curve rises to the left and falls to 
the right around c, making ƒ(c) a maximum locally. The function attains its absolute 
maximum at d. We now define what we mean by local extrema.

If the domain of ƒ is the closed interval 3a, b4 , then ƒ has a local maximum at the endpoint 
x = a, if ƒ(x) … ƒ(a) for all x in some half-open interval 3a, a + d), d 7 0. Likewise, ƒ 
has a local maximum at an interior point x = c if ƒ(x) … ƒ(c) for all x in some open inter-
val (c - d, c + d), d 7 0, and a local maximum at the endpoint x = b if ƒ(x) … ƒ(b) for 
all x in some half-open interval (b - d, b4 , d 7 0. The inequalities are reversed for local 
minimum values. In Figure 4.5, the function ƒ has local maxima at c and d and local min-
ima at a, e, and b. Local extrema are also called relative extrema. Some functions can 
have infinitely many local extrema, even over a finite interval. One example is the function 
ƒ(x) = sin (1>x) on the interval (0, 14 . (We graphed this function in Figure 2.40.)

DeFinitiOns A function ƒ has a local maximum value at a point c within its 
domain D if ƒ(x) … ƒ(c) for all x∊D lying in some open interval containing c.

A function ƒ has a local minimum value at a point c within its domain D if 
ƒ(x) Ú ƒ(c) for all x∊D lying in some open interval containing c.

Figure 4.4 Even a single point of dis-
continuity can keep a function from having 
either a maximum or minimum value on a 
closed interval. The function

y = e x, 0 … x 6 1

0, x = 1

is continuous at every point of 30, 14   
except x = 1, yet its graph over 30, 14  
does not have a highest point.
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Figure 4.3 Some possibilities for a continuous function’s maximum and  
minimum on a closed interval 3a, b4 .
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An absolute maximum is also a local maximum. Being the largest value overall, it is 
also the largest value in its immediate neighborhood. Hence, a list of all local maxima will 
automatically include the absolute maximum if there is one. Similarly, a list of all local 
minima will include the absolute minimum if there is one.

Finding extrema

The next theorem explains why we usually need to investigate only a few values to find a 
function’s extrema.

Figure 4.5 How to identify types of maxima and minima for a function with domain 
a … x … b.

x
ba c e d

Local minimum
No smaller value of
f  nearby.

Local minimum
No smaller value
of f  nearby.

Local maximum
No greater value of

f  nearby.

Absolute minimum
No smaller value of
f  anywhere. Also a

 local minimum.

Absolute maximum
No greater value of f anywhere.
Also a local maximum.

y = f (x)

theOrem 2—the First Derivative theorem for Local extreme values If 
ƒ has a local maximum or minimum value at an interior point c of its domain, 
and if ƒ′ is defined at c, then

ƒ′(c) = 0.

Proof  To prove that ƒ′(c) is zero at a local extremum, we show first that ƒ′(c) cannot 
be positive and second that ƒ′(c) cannot be negative. The only number that is neither posi-
tive nor negative is zero, so that is what ƒ′(c) must be.

To begin, suppose that ƒ has a local maximum value at x = c (Figure 4.6) so that 
ƒ(x) - ƒ(c) … 0 for all values of x near enough to c. Since c is an interior point of ƒ’s 
domain, ƒ′(c) is defined by the two-sided limit

lim
xSc

 
ƒ(x) - ƒ(c)

x - c .

This means that the right-hand and left-hand limits both exist at x = c and equal ƒ′(c). 
When we examine these limits separately, we find that

 ƒ′(c) = lim
xSc+

 
ƒ(x) - ƒ(c)

x - c … 0.  Because (x - c) 7 0 and ƒ(x) … ƒ(c) (1)

Similarly,

 ƒ′(c) = lim
xSc-

 
ƒ(x) - ƒ(c)

x - c Ú 0.  Because (x - c) 6 0 and ƒ(x) … ƒ(c) (2)

Together, Equations (1) and (2) imply ƒ′(c) = 0.
This proves the theorem for local maximum values. To prove it for local minimum 

values, we simply use ƒ(x) Ú ƒ(c), which reverses the inequalities in Equations (1)  
and (2). 

Figure 4.6 A curve with a local 
maximum value. The slope at c, simultane-
ously the limit of nonpositive numbers and 
nonnegative numbers, is zero.
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Theorem 2 says that a function’s first derivative is always zero at an interior point 
where the function has a local extreme value and the derivative is defined. If we recall that 
all the domains we consider are intervals or unions of separate intervals, the only places 
where a function ƒ can possibly have an extreme value (local or global) are

1. interior points where ƒ′ = 0, At x = c and x = e in Fig. 4.5

2. interior points where ƒ′ is undefined, At x = d  in Fig. 4.5 

3. endpoints of the domain of ƒ. At x = a and x = b in Fig. 4.5

The following definition helps us to summarize these results.

ExamplE 2  Find the absolute maximum and minimum values of ƒ(x) = x2 on 
3-2, 14 .

solution The function is differentiable over its entire domain, so the only critical point 
is where ƒ′(x) = 2x = 0, namely x = 0. We need to check the function’s values at x = 0 
and at the endpoints x = -2 and x = 1:

Critical point value: ƒ(0) = 0

Endpoint values: ƒ(-2) = 4

 ƒ(1) = 1.

The function has an absolute maximum value of 4 at x = -2 and an absolute minimum 
value of 0 at x = 0. 

ExamplE 3  Find the absolute maximum and minimum values of ƒ(x) =
10x (2 - ln x) on the interval 31, e24 .

how to Find the Absolute extrema of a Continuous Function ƒ on a Finite 
Closed interval
1. Evaluate ƒ at all critical points and endpoints.

2. Take the largest and smallest of these values.

DeFinitiOn An interior point of the domain of a function ƒ where ƒ′ is zero 
or undefined is a critical point of ƒ.

Thus the only domain points where a function can assume extreme values are critical 
points and endpoints. However, be careful not to misinterpret what is being said here. A 
function may have a critical point at x = c without having a local extreme value there. For 
instance, both of the functions y = x3 and y = x1>3 have critical points at the origin, but 
neither function has a local extreme value at the origin. Instead, each function has a point 
of inflection there (see Figure 4.7). We define and explore inflection points in Section 4.4.

Most problems that ask for extreme values call for finding the absolute extrema of a 
continuous function on a closed and finite interval. Theorem 1 assures us that such values 
exist; Theorem 2 tells us that they are taken on only at critical points and endpoints. Often 
we can simply list these points and calculate the corresponding function values to find 
what the largest and smallest values are, and where they are located. Of course, if the 
interval is not closed or not finite (such as a 6 x 6 b or a 6 x 6 q), we have seen that 
absolute extrema need not exist. If an absolute maximum or minimum value does exist, it 
must occur at a critical point or at an included right- or left-hand endpoint of the interval.
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Figure 4.7 Critical points without 
extreme values. (a) y′ = 3x2 is 0 at x = 0, 
but y = x3 has no extremum there.  
(b) y′ = (1>3)x-2>3 is undefined at x = 0, 
but y = x1>3 has no extremum there.
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solution Figure 4.8 suggests that ƒ has its absolute maximum value near x = 3 and its 
absolute minimum value of 0 at x = e2. Let’s verify this observation.

We evaluate the function at the critical points and endpoints and take the largest and 
smallest of the resulting values.

The first derivative is

ƒ′(x) = 10(2 - ln x) - 10xa1xb = 10(1 - ln x).

The only critical point in the domain 31, e24  is the point x = e, where ln x = 1. The val-
ues of ƒ at this one critical point and at the endpoints are

Critical point value:   ƒ(e) = 10e

Endpoint values:  ƒ(1) = 10(2 - ln 1) = 20

 ƒ(e2) = 10e2(2 - 2 ln e) = 0.

We can see from this list that the function’s absolute maximum value is 10e ≈ 27.2; it 
occurs at the critical interior point x = e. The absolute minimum value is 0 and occurs at 
the right endpoint x = e2. 

ExamplE 4  Find the absolute maximum and minimum values of ƒ(x) = x2>3 on the 
interval 3-2, 34 .

solution We evaluate the function at the critical points and endpoints and take the larg-
est and smallest of the resulting values.

The first derivative

ƒ′(x) = 2
3 x-1>3 = 2

323 x

has no zeros but is undefined at the interior point x = 0. The values of ƒ at this one critical 
point and at the endpoints are

Critical point value:  ƒ(0) = 0

Endpoint values:  ƒ(-2) = (-2)2>3 = 23 4

  ƒ(3) = (3)2>3 = 23 9.

We can see from this list that the function’s absolute maximum value is 23 9 ≈ 2.08, and 
it occurs at the right endpoint x = 3. The absolute minimum value is 0, and it occurs at 
the interior point x = 0 where the graph has a cusp (Figure 4.9). 

Figure 4.8 The extreme values of 
ƒ(x) = 10x(2 - ln x) on 31, e24  occur at 
x = e and x = e2 (Example 3).
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Figure 4.9 The extreme values of 
ƒ(x) = x2>3 on 3-2, 34  occur at x = 0 
and x = 3 (Example 4).

Finding extrema from graphs
In Exercises 1–6, determine from the graph whether the function has 
any absolute extreme values on 3a, b4 . Then explain how your 
answer is consistent with .Theorem 1

 1.   2. 
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In Exercises 15–20, sketch the graph of each function and determine 
whether the function has any absolute extreme values on its domain. 
Explain how your answer is consistent with Theorem 1.

15. ƒ(x) = 0 x 0 , -1 6 x 6 2

16. y = 6
x2 + 2

, -1 6 x 6 1

17. g(x) = e-x,    0 … x 6 1

x - 1, 1 … x … 2

18. h(x) = •
1
x ,   -1 … x 6 02x, 0 … x … 4

19. y = 3 sin x, 0 6 x 6 2p

20. ƒ(x) = •
x + 1, -1 … x 6 0

cos x,      0 6 x … p

2

Absolute extrema on Finite Closed intervals
In Exercises 21–40, find the absolute maximum and minimum values 
of each function on the given interval. Then graph the function. Iden-
tify the points on the graph where the absolute extrema occur, and 
include their coordinates.

21. ƒ(x) = 2
3

 x - 5, -2 … x … 3

22. ƒ(x) = -x - 4, -4 … x … 1

23. ƒ(x) = x2 - 1, -1 … x … 2

24. ƒ(x) = 4 - x3, -2 … x … 1

25. F(x) = -  
1
x2 , 0.5 … x … 2

26. F(x) = -  
1
x , -2 … x … -1

27. h(x) = 23 x, -1 … x … 8

28. h(x) = -3x2>3, -1 … x … 1

29. g(x) = 24 - x2 , -2 … x … 1

30. g(x) = -25 - x2 , -25 … x … 0

31. ƒ(u) = sin u, -  
p

2
… u … 5p

6

32. ƒ(u) = tan u, -  
p

3
… u … p

4

33. g(x) = csc x, 
p

3
… x … 2p

3

34. g(x) = sec x, -  
p

3
… x … p

6
35. ƒ(t) = 2 - 0 t 0 , -1 … t … 3

36. ƒ(t) = 0 t - 5 0 , 4 … t … 7

37. g(x) = xe-x, -1 … x … 1

38. h(x) = ln (x + 1), 0 … x … 3

39. ƒ(x) = 1
x + ln x, 0.5 … x … 4

40. g(x) = e-x2
, -2 … x … 1

 5.   6. 

In Exercises 7–10, find the absolute extreme values and where they 
occur.

 7.   8. 

 9.   10. 

In Exercises 11–14, match the table with a graph.

11.   12. 

13.   14. 
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x ƒ′(x)

a 0
b 0
c 5

x ƒ′(x)

a   0
b   0
c -5

x ƒ′(x)

a does not exist
b   0
c -2

x ƒ′(x)

a does not exist
b does not exist
c -1.7

a b c a b c

a b c a b c

(a) (b)

(c) (d)
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theory and examples
79. A minimum with no derivative The function ƒ(x) = 0 x 0  has 

an absolute minimum value at x = 0 even though ƒ is not differ-
entiable at x = 0. Is this consistent with Theorem 2? Give rea-
sons for your answer.

80. Even functions If an even function ƒ(x) has a local maximum 
value at x = c, can anything be said about the value of ƒ at 
x = -c? Give reasons for your answer.

81. Odd functions If an odd function g(x) has a local minimum 
value at x = c, can anything be said about the value of g at 
x = -c? Give reasons for your answer.

82. No critical points or endpoints exist We know how to find the 
extreme values of a continuous function ƒ(x) by investigating its 
values at critical points and endpoints. But what if there are no criti-
cal points or endpoints? What happens then? Do such functions 
really exist? Give reasons for your answers.

83. The function

V(x) = x(10 - 2x)(16 - 2x),  0 6 x 6 5,

  models the volume of a box.

 a. Find the extreme values of V.

 b. Interpret any values found in part (a) in terms of the volume 
of the box.

84. Cubic functions Consider the cubic function

ƒ(x) = ax3 + bx2 + cx + d.

 a. Show that ƒ can have 0, 1, or 2 critical points. Give examples 
and graphs to support your argument.

 b. How many local extreme values can ƒ have?

85. Maximum height of a vertically moving body The height of a 
body moving vertically is given by

s = -  
1
2

 gt2 + y0 t + s0,  g 7 0,

  with s in meters and t in seconds. Find the body’s maximum height.

86. Peak alternating current Suppose that at any given time t (in 
seconds) the current i (in amperes) in an alternating current cir-
cuit is i = 2 cos t + 2 sin t. What is the peak current for this cir-
cuit (largest magnitude)?

Graph the functions in Exercises 87–90. Then find the extreme values 
of the function on the interval and say where they occur.

87. ƒ(x) = 0 x - 2 0 + 0 x + 3 0 , -5 … x … 5

88. g(x) = 0 x - 1 0 - 0 x - 5 0 , -2 … x … 7

89. h(x) = 0 x + 2 0 - 0 x - 3 0 , -q 6 x 6 q
90. k(x) = 0 x + 1 0 + 0 x - 3 0 , -q 6 x 6 q

Computer explorations
In Exercises 91–98, you will use a CAS to help find the absolute 
extrema of the given function over the specified closed interval. Per-
form the following steps.

 a. Plot the function over the interval to see its general behavior there.

 b. Find the interior points where ƒ′ = 0. (In some exercises, you 
may have to use the numerical equation solver to approximate a 
solution.) You may want to plot ƒ′ as well.

 c. Find the interior points where ƒ′ does not exist.

t

In Exercises 41–44, find the function’s absolute maximum and mini-
mum values and say where they are assumed.

41. ƒ(x) = x4>3, -1 … x … 8

42. ƒ(x) = x5>3, -1 … x … 8

43. g(u) = u3>5, -32 … u … 1

44. h(u) = 3u2>3, -27 … u … 8

Finding Critical points
In Exercises 45–52, determine all critical points for each function.

45. y = x2 - 6x + 7 46. ƒ(x) = 6x2 - x3

47. ƒ(x) = x(4 - x)3 48. g(x) = (x - 1)2(x - 3)2

49. y = x2 + 2
x  50. ƒ(x) = x2

x - 2

51. y = x2 - 322x 52. g(x) = 22x - x2

Finding extreme Values
In Exercises 53–68, find the extreme values (absolute and local) of the 
function over its natural domain, and where they occur.

 53. y = 2x2 - 8x + 9 54. y = x3 - 2x + 4

 55. y = x3 + x2 - 8x + 5 56. y = x3(x - 5)2

 57. y = 2x2 - 1 58. y = x - 42x

 59. y = 123 1 - x2
 60. y = 23 + 2x - x2

 61. y = x
x2 + 1

 62. y = x + 1
x2 + 2x + 2

 63. y = ex + e-x 64. y = ex - e-x

 65. y = x ln x 66. y = x2 ln x

 67. y = cos-1 (x2) 68. y = sin-1(ex)

local extrema and Critical points
In Exercises 69–76, find the critical points, domain endpoints, and 
extreme values (absolute and local) for each function.

 69. y = x2>3(x + 2) 70. y = x2>3(x2 - 4)

 71. y = x24 - x2 72. y = x223 - x

 73. y = e4 - 2x,  x … 1

x + 1,   x 7 1
 74. y = e3 - x,        x 6 0

3 + 2x - x2,  x Ú 0

 75. y = e-x2 - 2x + 4,  x … 1

-x2 + 6x - 4,  x 7 1

 76. y = c -  
1
4

 x2 - 1
2

 x + 15
4

,  x … 1

x3 - 6x2 + 8x,      x 7 1

In Exercises 77 and 78, give reasons for your answers.

77. Let ƒ(x) = (x - 2)2>3.

 a. Does ƒ′(2) exist?

b. Show that the only local extreme value of ƒ occurs at x = 2.

 c. Does the result in part (b) contradict the Extreme Value  
Theorem?

d. Repeat parts (a) and (b) for ƒ(x) = (x - a)2>3, replacing 2  
by a.

78. Let ƒ(x) = 0 x3 - 9x 0 .
 a. Does ƒ′(0) exist? b. Does ƒ′(3) exist?

 c. Does ƒ′(-3) exist? d. Determine all extrema of ƒ.
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4.2 the mean Value theorem

We know that constant functions have zero derivatives, but could there be a more compli-
cated function whose derivative is always zero? If two functions have identical derivatives 
over an interval, how are the functions related? We answer these and other questions in 
this chapter by applying the Mean Value Theorem. First we introduce a special case, 
known as Rolle’s Theorem, which is used to prove the Mean Value Theorem.

rolle’s theorem

As suggested by its graph, if a differentiable function crosses a horizontal line at two dif-
ferent points, there is at least one point between them where the tangent to the graph is 
horizontal and the derivative is zero (Figure 4.10). We now state and prove this result.

94. ƒ(x) = 2 + 2x - 3x2>3, 3-1, 10>34
95. ƒ(x) = 2x + cos x, 30, 2p4
96. ƒ(x) = x3>4 - sin x + 1

2
, 30, 2p4

97. ƒ(x) = px2e- 3x>2,   30, 54
98. ƒ(x) = ln (2x + x sin x),   31, 154

 d. Evaluate the function at all points found in parts (b) and (c) and at 
the endpoints of the interval.

 e. Find the function’s absolute extreme values on the interval and 
identify where they occur.

91. ƒ(x) = x4 - 8x2 + 4x + 2, 3-20>25, 64>254
92. ƒ(x) = -x4 + 4x3 - 4x + 1, 3-3>4, 34
93. ƒ(x) = x2>3(3 - x), 3-2, 24

theorem 3—rolle’s theorem Suppose that y = ƒ(x) is continuous over 
the closed interval 3a, b4  and differentiable at every point of its interior (a, b). 
If ƒ(a) = ƒ(b), then there is at least one number c in (a, b) at which ƒ′(c) = 0.

Proof  Being continuous, ƒ assumes absolute maximum and minimum values on 
3a, b4  by Theorem 1. These can occur only

1. at interior points where ƒ′ is zero,

2. at interior points where ƒ′ does not exist,

3. at endpoints of the function’s domain, in this case a and b.

By hypothesis, ƒ has a derivative at every interior point. That rules out possibility (2), 
leaving us with interior points where ƒ′ = 0 and with the two endpoints a and b.

If either the maximum or the minimum occurs at a point c between a and b, then 
ƒ′(c) = 0 by Theorem 2 in Section 4.1, and we have found a point for Rolle’s Theorem.

If both the absolute maximum and the absolute minimum occur at the endpoints, then 
because ƒ(a) = ƒ(b) it must be the case that ƒ is a constant function with ƒ(x) = ƒ(a) = ƒ(b) 
for every x∊ 3a, b4 . Therefore ƒ′(x) = 0 and the point c can be taken anywhere in the 
interior (a, b). 

The hypotheses of Theorem 3 are essential. If they fail at even one point, the graph 
may not have a horizontal tangent (Figure 4.11).

Rolle’s Theorem may be combined with the Intermediate Value Theorem to show 
when there is only one real solution of an equation ƒ(x) = 0, as we illustrate in the next 
example.

ExamplE 1  Show that the equation

x3 + 3x + 1 = 0

has exactly one real solution.
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f ′(c3) = 0
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Figure 4.10 Rolle’s Theorem says 
that a differentiable curve has at least one 
horizontal tangent between any two points 
where it crosses a horizontal line. It may 
have just one (a), or it may have more (b).
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