
��9-3�(�¶�;��H�
�;3�¶H�.�k��²90�C�

What	is	HTML?

1

Welcome	to	HTML!

• HTML	stands	for HyperTextMarkup Language.

• Unlike	a	scripting	or	programming	language	that	uses	scripts	to	
perform	functions,	a	markup	language	uses	tags	to	identify	content.

• Here	is	an	example	of	an	HTML	tag:
<p> I'm	a	paragraph	</p>

2

The	Web	Structure

• The	ability	to	code	using	HTML	is	essential	for	any	web	professional.	
Acquiring	this	skill	should	be	the	starting	point	for	anyone	who	is	learning	
how	to	create	content	for	the	web.

• Modern	Web	Design:
HTML:	Structure
CSS:	Presentation
JavaScript:	Behavior

PHP	or	similar:	Backend
CMS:	Content	Management

• HTML	is	easy	to	learn.	So	don't	wait!	Dive	right	in!

3

Basic	HTML	Document	

Structure

4

The <html> Tag

• Although	various	versions	have	been	released	over	the	years,	HTML	basics	
remain	the	same.

• The	structure	of	an	HTML	document	has	been	compared	with	that	of	a	sandwich.	
As	a	sandwich	has	two	slices	of	bread,	the	HTML	document	has	opening	and	
closing	HTML	tags.

• These	tags,	like	the	bread	in	a	sandwich,	surround	everything	else:
<html>

…
</html>

• Everything	in	an	HTML	document	is	surrounded	by	the <html> tag.

5

The <head> Tag

• Immediately	following	the	opening	HTML	tag,	you'll	find	the head of	
the	document,	which	is	identified	by	opening	and	closing	head	tags.

• The	head	of	an	HTML	file	contains	all	of	the non-visual	elements that	
help	make	the	page	work.
<html>

<head>…</head>
</html>

• The	head	section	elements	will	be	discussed	later.

6

The <body> Tag

• The body tag	follows	the	head	
tag.

• All	visual-structural	elements	are	
contained	within	the	body	tag.

• Headings,	paragraphs,	lists,	
quotes,	images,	and	links	are	
just	a	few	of	the	elements	that	
can	be	contained	within	the	
body	tag.

• Basic	HTML	Structure:

<html>
<head>
</head>
<body>

</body>

</html>

• The <body> tag	defines	the	main	
content	of	the	HTML	document.

7

Creating	Your	First	HTML	

Page

8

The	HTML	File

• HTML	files	are	text	files,	so	you	can	use	any text	editor to	create	your	first	
webpage.
• There	are	some	very	nice	HTML	editors	available;	you	can	choose	the	one	that	
works	for	you.	For	now	let's	write	our	examples	in Notepad.

• You	can	run,	save,	and	share	your	HTML	codes	on	our Code	Playground,	without	
installing	any	additional	software.

9

The	HTML	File

• Add	the	basic	HTML	structure	to	the	
text	editor	with	"This	is	a	line	of	text"	
in	the	body	section.
<html>

<head>
</head>
<body>

This	is	a	line	of	text.	
</body>

</html>

• In	our	example,	the	file	is	saved	
as first.html

• When	the	file	is	opened,	the	following	
result	is	displayed	in	the	web	browser:

• Don’t	forget	to	save	the	file.	HTML	file	
names	should	end	in	
either .html or .htm

10

The <title> Tag

• To	place	a	title	on	the	tab	describing	
the	web	page,	add	a <title> element	
to	your	head	section:

<html>
<head>

<title>first	page</title>
</head>
<body>

This	is	a	line	of	text.	
</body>

</html>

• This	will	produce	the	following	
result:

• The	title	element	is	important	
because	it	describes	the	page	and	
is	used	by	search	engines.

11

Favicon

• Adding	a	Favicon	to	your	Website:

<link rel="icon" href="demo_icon.gif" type="i
mage/gif" sizes="16x16">

or:

<link	rel="icon"	
href=http://example.com/favicon.ico	
type="image/gif" sizes="16x16"	/>	

• Apple	iOS	Home	Screen	Icons:

• iOS	will	add	rounded	corners	and	a	reflective	
shine	to	your	iOS	home	screen	icon.
<link	rel="apple-touch-icon"	
href="http://example.com/images/apple-
touch-icon.png"	/>

• If	you	prefer	it	without	the	reflective	shine,	
use	the	following	code:
<link	rel="apple-touch-icon-precomposed"	
href="http://example.com/images/apple-
touch-icon.png"	/>

12

Paragraphs

13

The <p> Element

• To	create	a	paragraph,	simply	type	
in	the <p> element	with	its	opening	
and	closing	tags:
<html>

<head>
<title>first	page</title>

</head>
<body>

<p>This	is	a	paragraph.	</p>
<p>This	is	another	paragraph.	

</p>
</body>

</html>

• The	result:

• Browsers	automatically	add	an	
empty	line	before	and	after	a	
paragraph.

14

Single	Line	Break

• Use	the
 tag	to	add	a	single	line	of	text	without	starting	a	new	
paragraph:
<html>

<head>
<title>first	page</title>

</head>
<body>

<p>This	is	a	paragraph.</p>
<p>This	is	another	paragraph.	</p>
<p>This	is	
 a	line	break	</p>

</body>
</html>

• The
 element	is	an	empty	HTML	element.	It	has	no	end	tag.

15

Single	Line	Break

• Opening	the	HTML	file	in	the	browser	shows	that	a	single	line	break	
has	been	added	to	the	paragraph:

• The
 element	has	no	end	tag.

16

Text	Formatting

17

Formatting	Elements

• In	HTML,	there	is	a	list	of	elements	that	specify	text	style.

• Formatting	elements	were	designed	to	display	special	types	of	text:
<html>

<head>
<title>first	page</title>

</head>
<body>

<p>This	is	regular	text	</p>
<p> bold	text	</p>
<p><big>	big	text	</big></p>
<p><i> italic	text	</i></p>
<p><small> small	text	</small></p>
<p> strong	text	</p>
<p>_{subscripted	text}</p>
<p>^{superscripted	text}</p>
<p><ins> inserted	text	</ins></p>
<p> deleted	text	</p>

</body>
</html>

18

Formatting	Elements

• Each	paragraph	in	the	example	is	
formatted	differently	to	
demonstrate	what	each	tag	does:

• Browsers	display as ,	
and as <i>.
• However,	the	meanings	of	these	
tags	differ: and <i> define	bold	
and	italic	text,	respectively,	
while and indicate	
that	the	text	is	"important".

19

Headings,	Lines,	Comments

20

HTML	Headings

• HTML	includes	six	levels	of	headings,	which	
are	ranked	according	to	importance.
These	are <h1>, <h2>, <h3>, <h4>, <h5>,	
and <h6>.

• The	following	code	defines	all	of	the	
headings:
<html>

<head>
<title>first	page</title>

</head>
<body>

<h1>This	is	heading	1</h1>
<h2>This	is	heading	2</h2>
<h3>This	is	heading	3</h3>
<h4>This	is	heading	4</h4>
<h5>This	is	heading	5</h5>
<h6>This	is	heading	6</h6>

</body>
</html>

• Result:

• It	is	not	recommended	that	you	use	headings	
just	to	make	the	text	big	or	bold,	because	
search	engines	use	headings	to	index	the	web	
page	structure	and	content.

21

Horizontal	Lines

• To	create	a	horizontal	line,	use	the <hr /> tag.

<html>
<head>

<title>first	page</title>
</head>
<body>

<h1>This	is	heading	1</h1>
<h2>This	is	heading	2</h2>
<h3>This	is	heading	3</h3>
<h4>This	is	heading	4</h4>
<h5>This	is	heading	5</h5>
<h6>This	is	heading	6</h6>
<p>This	is	a	paragraph	</p>
<hr />
<p>This	is	a	paragraph	</p>

</body>
</html>

• Result:

• In	HTML5,	the <hr> tag	defines	a	thematic	
break.

22

Comments

• The	browser	does	not	display	comments,	
but	they	help	document	the	HTML	and	
add	descriptions,	reminders,	and	other	
notes.
<!-- Your	comment	goes	here	-->

• Example:
<html>

<head>
<title>first	page</title>

</head>
<body>

<p>This	is	a	paragraph	</p>
<hr />
<p>This	is	a	paragraph	</p>
<!-- This	is	a	comment	-->

</body>
</html>

• Result:

• As	you	can	see,	the	comment	is	not	
displayed	in	the	browser.

• There	is	an	exclamation	point	(!)	in	the	
opening	tag,	but	not	in	the	closing	tag.

23

Elements

24

HTML	Elements

• HTML	documents	are	made	up	of	HTML	elements.
• An	HTML	element	is	written	using	a start	tag and	an end	tag,	and	with	the content in	between.

• HTML	documents	consist	of	nested	HTML	elements.	In	the	example	below,	the	body	element	
includes	the <p> tags,	the
 tag	and	the	content,	"This	is	a	paragraph".
<html>

<head>
<title>first	page</title>

</head>
<body>

<p>This	is	a	paragraph	
</p>
</body>

</html>

• Some	HTML	elements	(like	the
 tag)	do	not	have	end	tags.

25

HTML	Elements

• Some	elements	are	quite	small.	Since	you	can't	put	contents	within	a	break	tag,	and	you	
don't	have	an	opening	and	closing	break	tag,	it’s	a	separate,	single	element.

• So	HTML	is	really	scripting	with	elements	within	elements.<html>
<html>

<head>
<title>first	page</title>

</head>
<body>

<p>This	is	a	paragraph</p>
<p>This	is	a	
 line	break</p>

</body>
</html>

• Some	HTML	elements	(like	the
 tag)	do	not	have	end	tags.

26

Attributes

27

HTML	Attributes

• Attributes	provide additional	
information about	an	element	or	a	
tag,	while	alsomodifying them.	
Most	attributes	have	a	value;	the	
value	modifies	the	attribute.
<p align="center">	

This	text	is	aligned	to	center
</p>

• In	this	example,	the	value	of	
"center"	indicates	that	the	content	
within	the	p	element	should	be	
aligned	to	the	center:

• Result:

• Attributes	are	always	specified	in	
the	start	tag,	and	they	appear	in	
name="value"	pairs.

28

Attribute	Measurements

• As	an	example,	we	can	modify	the	horizontal	line	so	it	has	a	width	of	
50	pixels.

• This	can	be	done	by	using	the	width	attribute:
<hr width="50px"	/>

• An	element's	width	can	also	be	defined	using	percentages:
<hr width="50%"	/>

• An	element's	width	can	be	defined	using	pixels	or	percentages.

29

The	Align	Attribute

• The align attribute	is	used	to	specify	how	the	text	is	aligned.

• In	the	example	below,	we	have	a	paragraph	that	is	aligned	to	the	center,	and	a	line	that	is	aligned	
to	the	right.
<html>

<head>
<title>Attributes</title>

</head>
<body>

<p align="center">This	is	a	text	

<hr width="10%"	align="right"	/>	This	is	also	a	text.

</p>
</body>

</html>

• The	align	attribute	of <p> is	not	supported	in	HTML5.

30

Attributes

• You	may	be	wondering	what	
happens	if	you	try	to	apply	
contradictory	attributes	within	
the	same	element.

<p align="center">
This	is	a	text.
<hr width="50%"	align="left"	/>
</p>

• Result:

• The	align	attribute	of <p> is	not	
supported	in	HTML5.

31

Images

32

The Tag

• The tag	is	used	to	insert	an	image.	It	contains	only	attributes,	
and	does	not	have	a	closing	tag.

• The	image's	URL	(address)	can	be	defined	using	the src attribute.

• The	HTML	image	syntax	looks	like	this:

• The	alt	attribute	specifies	an	alternate	text	for	an	image.

33

Image	Location

• You	need	to	put	in	the image	location for	the	src attribute	that	is	between	the	quotation	marks.

• For	example,	if	you	have	a	photo	named	"tree.jpg"	in	the	same	folder	as	the	HTML	file,	your	code	
should	look	like	this:
<html>

<head>
<title>first	page</title>

</head>
<body>

</body>

</html>

• In	case	the	image	cannot	be	displayed,	the	alt	attribute	specifies	an	alternate	text	that	describes	
the	image	in	words.	The	alt	attribute	is required.

34

Image	Resizing

• To	define	the	image	size,	use	the	width	and	height	attributes.
• The	value	can	be	specified	in pixels or	as	a percentage:
<html>

<head>
<title>first	page</title>

</head>
<body>

<!-- or	-->

</body>
</html>

• Loading	images	takes	time.	Using	large	images	can	slow	down	your	page,	so	use	
them	with	care.

35

Image	Border

• By	default,	an	image	has	no	borders.	Use	the	border	attribute	within	
the	image	tag	to	create	a	border	around	the	image.

<img src="tree.jpg"	height="150px"	width="150px"	border="1px"
alt=""	/>

• By	default,	Internet	Explorer	9,	and	its	earlier	versions,	display	a	
border	around	an	image	unless	a	border	attribute	is	defined.

36

Links

37

The <a> Tag

• Links	are	also	an	integral	part	of	every	web	page.	You	can	add	links	to	
text	or	images	that	will	enable	the	user	to	click	on	them	in	order	to	be	
directed	to	another	file	or	webpage.
• In	HTML,	links	are	defined	using	the <a> tag.

• Use	the href attribute	to	define	the	link's	destination	address:

• To	link	an	image	to	another	document,	simply	nest	the tag	
inside <a> tags.

38

Creating	Your	First	Link

• In	the	example	below,	a	link	to	SoloLearn's website	is	defined:
	Visit	PTUK

• Once	the	code	has	been	saved,	"Visit	PTUK"	will	display	as	a	link:
Visit	PTUK

• Clicking	on	"Visit	PTUK"	redirects	you	to	www.ptuk.edu.ps

• Links	can	be	either	absolute	or	relative.
39

The	target	Attribute

• The target attribute	specifies	where	to	open	the	linked	document.

• Giving	a _blank value	to	your	attribute	will	have	the	link	open	in	a	
new	window	or	new	tab:

Visit	PTUK

• A	visited	link	is	underlined	and	purple.

40

Lists

41

HTML	Ordered	Lists

• An	ordered	list	starts	with	
the tag,	and	each	list	item	is	
defined	by	the tag.
• Here	is	an	example	of	an ordered	list:
<html>

<head>
<title>first	page</title>

</head>
<body>

Red
Blue
Green

	
</body>

</html>

• Result:

• The	list	items	will	be	automatically	
marked	with	numbers.

42

HTML	Unordered	Lists

• An	unordered	list	starts	with	
the tag.

<html>
<head>

<title>first	page</title>
</head>
<body>

Red
Blue
Green

	
</body>

</html>

• Result:

• The	list	items	will	be	marked	with	
bullets.

43

Tables

44

Creating	a	Table

• Tables	are	defined	by	using	the <table> tag.
• Tables	are	divided	into	table	rows	with	the <tr> tag.
• Table	rows	are	divided	into	table	columns	(table	data)	with	the	<td>	tag.

• Here	is	an	example	of	a	table	with one	row and three	columns:
<table>

<tr>
<td></td>
<td></td>
<td></td>

</tr>
</table>

• Table	data	tags <td> act	as	data	containers	within	the	table.
• They	can	contain	all	sorts	of	HTML	elements,	such	as	text,	images,	lists,	other	tables,	and	so	on.

45

The	border	and	colspan Attributes

• A	border	can	be	added	using	
the border attribute:
<table border="2">
• A	table cell can	span	two	or	more	
columns:
<table	border="2">

<tr>
<td>Red</td>
<td>Blue</td>
<td>Green</td>

</tr>
<tr>

<td>
</td>
<td colspan="2">
</td>

</tr>
</table>

• Result:

• The	border	attribute	is	not	supported	
in	HTML5.

46

Colspan Color

• The	example	below	demonstrates	
the colspan attribute	in	action:

<table	border="2">
<tr>
<td>Red</td>
<td>Blue</td>
<td>Green</td>

</tr>
<tr>
<td>Yellow</td>
<td colspan="2">Orange</td>

</tr>
</table>

• Result:

• You	can	see	that	the	cell	containing	
"Orange"	spans	two	cells.
• To	make	a	cell	span	more	than	one	
row,	use	the rowspan attribute.

47

The	align	and	bgcolor Attributes

• To	change	your	table's	position,	use	
the align attribute	inside	your	table	tag:
<table align="center">

• Now	let's	specify	a	background	color	of	red	
for	a	table	cell.	To	do	that,	just	use	the	
bgcolor attribute.	

<table	border="2">
<tr>
<td	bgcolor=”red">Red</td>
<td>Blue</td>
<td>Green</td>

</tr>
<tr>
<td>Yellow</td>
<td colspan="2">Orange</td>

</tr>
</table>

• Result:

• In	the	case	of	styling	elements,	CSS	is	more	
effective	than	HTML.	Try	our	free	"Learn	CSS"	
course	to	learn	more	about	CSS	and	styles.

48

Inline	and	Block	Elements

49

Types	of	Elements

• In	HTML,	most	elements	are	defined	as block	level or inline elements.
Block	level	elements	start	from	a	new	line.
• For	example: <h1>, <form>, , , , <p>, <pre>, <table>, <div>,	etc.

• Inline	elements	are	normally	displayed	without	line	breaks.
• For	example: , <a>, , , <input>, ,	,	etc.

• The <div> element	is	a	block-level	element	that	is	often	used	as	a container	
for	other	HTML	elements.
• When	used	together	with	some	CSS	styling,	the <div> element	can	be	used	
to	style	blocks	of	content:

50

Types	of	Elements

<html>
<body>

<h1>Headline</h1>
<div	style="background-

color:green;	color:white;	
padding:20px;">

<p>Some	paragraph	text	
goes	here.</p>

<p>Another	paragraph	goes	
here.</p>

</div>
</body>

</html>

51

Types	of	Elements

• Similarly,	the element	is	an	
inline	element	that	is	often	used	as	a	
container	for	some	text.
• When	used	together	with	CSS,	the	
	element	can	be	used	to	
style parts	of	the	text:
<html>

<body>
<h2>Some	
<span	

style="color:red">Important
Message</h2>

</body>
</html>

• Summary

The <div> element	defines	a block-
level section	in	a	document.
The		element	defines	
an inline section	in	a	document.

52

Types	of	Elements

• Other	elements	can	be	used	either	as	block	level	elements	or	inline	
elements.	This	includes	the	following	elements:
APPLET - embedded	Java	applet
IFRAME - Inline	frame
INS - inserted	text
MAP - image	map
OBJECT - embedded	object
SCRIPT - script	within	an	HTML	document

• You	can	insert	inline	elements	inside	block	elements.	For	example,	you	can	
have	multiple elements	inside	a <div> element.

• Inline	elements cannot contain	any	block	level	elements.

53

Forms

54

The <form> Element

• HTML	forms	are	used	to	collect	information	from	the	user.
• Forms	are	defined	using	the <form> element,	with	its	opening	and	closing	
tags:
<body>

<form>…</form>
</body>

• Use	the action attribute	to	point	to	a	webpage	that	will	load	after	the	user	
submits	the	form.<form	action="http://www.sololearn.com">	
</form>

• Usually	the	form	is	submitted	to	a	web	page	on	a	web	server.

55

The	method	and	name	Attributes

• Themethod	attribute specifies	the	HTTP	method	(GET or POST)	to	be	used	when	forms	
are	submitted	(see	below	for	description):
<form	action="url"method="GET">
<form	action="url"method="POST">

• When	you	use GET,	the	form	data	will	be	visible	in	the	page	address.

• Use POST if	the	form	is	updating	data,	or	includes	sensitive	information	(passwords).
• POST	offers	better	security	because	the	submitted	data	is	not	visible	in	the	page	address.

• To	take	in	user	input,	you	need	the	corresponding	form	elements,	such	as	text	fields.	
The <input> element	has	many	variations,	depending	on	the	type	attribute.	It	can	be	a	
text,	password,	radio,	URL,	submit,	etc.

56

The	method	and	name	Attributes

• The	example	below	shows	a	
form	requesting	a	username	and	
password:

<form>
<input	type="text"	

name="username"	/>

<input	type="password"	

name="password"	/>
</form>

• Result:

• The	name	attribute	specifies	a	
name	for	a	form.

57

Form	Elements

• If	we	change	the	input	type	
to radio,	it	allows	the	user	select	
only	one	of	a	number	of	choices:

<input type="radio"	
name="gender"	value="male"	/>	
Male	

<input type="radio"	
name="gender"	value="female"	
/>	Female	

• Result:

58

Form	Elements

• The	type	"checkbox"	allows	the	
user	to	select	more	than	one	
option:

<input type="checkbox"	
name="gender"	value="1"	/>	
Male	

<input type="checkbox"	
name="gender"	value="2"	/>	
Female	

• Result:

• The <input> tag	has	no	end	tag.

59

Form	Elements

• The	submit	button submits	a	
form to	its	action	attribute:

<input type="submit"	
value="Submit"	/>	

• Result:

• After	the	form	is	submitted,	the	
data	should	be	processed	on	the	
server	using	a	programming	
language,	such	as	PHP.

60

HTML	Colors

61

HTML	Colors!

• HTML	colors	are	expressed	as	hexadecimal	values.

0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F

• As	you	can	see,	there	are	16	values	there,	0	through	F.	Zero	
represents	the	lowest	value,	and	F	represents	the	highest.

62

HTML	Color	Model

• Colors	are	displayed	in	
combinations	of red, green,	
and blue light	(RGB).

• Hex	values	are	written	using	the	
hashtag	symbol	(#),	followed	by	
either	three	or	six	hex	characters.

• As	shown	in	the	picture	below,	the	
circles	overlap,	forming	new	colors:

• RGB	color	values	are	supported	in	
all	browsers.

63

Color	Values

• Hexadecimal	color	values	are	
supported	in	all	browsers.

• All	of	the	possible red, green,	
and blue combinations	
potentially	number	over	16	
million.

• Here	are	only	a	few	of	them:

• We	can	mix	the	colors	to	form	
additional	colors:
Orange	and	red	mix:

64

Background	and	Font	Colors

• The bgcolor attribute	can	be	used	to	
change	the	web	page's	background	color.

• This	example	would	produce	a	dark	blue	
background	with	a	white	headline:
<html>

<head>
<title>first	page</title>	

</head>
<body bgcolor="#000099">

<h1>
	White	

headline	
</h1>	

</body>
</html>

• Result:

• The	color	attribute	specifies	the	color	of	
the	text	inside	a element.

65

Frames

66

The <frame> Tag

• A	page	can	be	divided	into	frames	using	a	special	frame	document.

• The <frame> tag	defines	one	specific	window	(frame)	within	a <frameset>.	
Each <frame> in	a	<frameset>	can	have	different	attributes,	such	as	border,	
scrolling,	the	ability	to	resize,	etc.

• The	<frameset>	element	specifies	the	number	of	columns	or	rows	in	the	
frameset,	as	well	as	what	percentage	or	number	of	pixels	of	space	each	of	them	
occupies.
<frameset cols="100,	25%,	*"></frameset>
<frameset	rows="100,	25%,	*"></frameset>

• The	<frameset>	tag	is	not	supported	in	HTML5.

67

Working	with	Frames

• Use	the <noresize> attribute	to	
specify	that	a	user	cannot	resize	
a <frame> element:
<frame noresize="noresize">

• Frame	content	should	be	defined	
using	the src attribute.

• The <frame> tag	is	not	supported	
in	HTML5.

• Lastly,	the <noframes> element	
provides	a	way	for	browsers	that	
do	not	support	frames	to	view	the	
page.	The	element	can	contain	an	
alternative	page,	complete	with	a	
body	tag	and	any	other	elements.
•
<frameset	cols="25%,50%,25%">

<frame src="a.htm"	/>
<frame src="b.htm"	/>
<frame src="c.htm"	/>
<noframes>Frames	not	

supported!</noframes>
</frameset>

68

YouTube	Videos	Frames?

69

Introduction	to	HTML5

70

HTML5

• When	writing	HTML5	
documents,	one	of	the	first	new	
features	that	you'll	notice	is	the	
doc	type	declaration:
<!DOCTYPE	HTML>

• The	character	encoding	(charset)	
declaration	is	also	simplified:
<meta	charset="UTF-8">

• New	Elements	in	HTML5

<article>, <aside>, <audio>, <can
vas>, <datalist>,	
<details>, <embed>, <footer>, <
header>, <nav>,	
<output>, <progress>, <section>,
<video>,	and	even	more!

• The	default	character	encoding	
in	HTML5	is	UTF-8.

71

New	in	HTML5

• Forms
- The	Web	Forms	2.0	specification	
allows	for	creation	of	more	
powerful	forms	and	more	
compelling	user	experiences.
- Date	pickers,	color	pickers,	and	
numeric	stepper	controls	have	
been	added.
- Input	field	types	now	include	
email,	search,	and	URL.
- PUT	and	DELETE	form	methods	
are	now	supported.

• Integrated	API (Application	
Programming	Interfaces)
- Drag	and	Drop
- Audio	and	Video
- Offline	Web	Applications
- History
- Local	Storage
- Geolocation
- Web	Messaging

• You	will	learn	more	about	these	
new	features	in	the	upcoming	
lessons.

72

Content	Models

73

The	List	of	Content	Models

• In	HTML,	elements	typically	belonged	in	either	the	block	level	or	inline	
content	model.	HTML5	introduces sevenmain	content	models.
- Metadata
- Embedded
- Interactive
- Heading
- Phrasing
- Flow
- Sectioning

• The	HTML5	content	models	are	designed	to	make	the	markup	structure	
more	meaningful	for	both	the	browser	and	the	web	designer.

74

Content	Models

• Metadata:	Content	that	sets	up	the	
presentation	or	behavior	of	the	rest	of	the	
content.	These	elements	are	found	in	
the head of	the	document.
Elements: <base>, <link>, <meta>, <noscript>,
<script>, <style>, <title>

• Embedded:	Content	that	imports	other	
resources	into	the	document.
Elements: <audio>, <video>, <canvas>, <ifram
e>, ,	<math>, <object>, <svg>

• Interactive:	Content	specifically	intended	for	
user	interaction.
Elements: <a>, <audio>, <video>, <button>,	
<details>, <embed>, <iframe>, , <input>
, <label>, <object>, <select>, <textarea>

• Heading:	Defines	a	section	header.
Elements: <h1>, <h2>, <h3>, <h4>, <h5>, <h6>
,	<hgroup>

• Phrasing:	This	model	has	a	number	of	inline	
level	elements	in	common	with	HTML4.
Elements: ,	
, , <label>,
, <small>, <sub>,	and	more.

• The	same	element	can	belong	to	more	than	
one	content	model.

75

Content	Models

• Flow	content:	Contains	the	
majority	of	HTML5	elements	
that	would	be	included	in	the	
normal	flow	of	the	document.

• Sectioning	content: Defines	the	
scope	of	headings,	content,	
navigation,	and	footers.
Elements: <article>, <aside>, <na
v>, <section>

• The	various	content	models	
overlap	in	certain	areas,	
depending	on	how	they	are	
being	used.

76

HTML5	Page	Structure

77

Page	Structure	in	HTML5

• A	generic	HTML5	page	structure	
looks	like	this:

• You	may	not	need	some	of	these	
elements,	depending	on	your	
page	structure.

78

header,	nav &	footer

79

The <header> Element

• In	HTML4,	we	would	define	a	header	like	
this:<div	id="header">
In	HTML5,	a	simple <header> tag	is	used,	
instead.

• The <header> element	is	appropriate	for	
use	inside	the	body	tag.
<!DOCTYPE	html>
<html>
<head></head>
<body>
<header>
<h1> Most	important	heading	</h1>
<h3> Less	important	heading	</h3>

</header>
</body>

</html>

• Result:

• Note	that	the <header> is	completely	
different	from	the <head> tag.

80

The <footer> Element

• The	footer	element	is	also	widely	
used.	Generally	we	refer	to	a	
section	located	at	the	very	
bottom	of	the	web	page	as	the	
footer.

<footer>…</footer>

• The	following	information	is	
usually	provided	between	these	
tags:
- Contact	Information
- Privacy	Policy
- Social	Media	Icons
- Terms	of	Service
- Copyright	Information
- Sitemap	and	Related	
Documents

81

The <nav> Element

• This	tag	represents	a	section	of	a	page	
that	links	to	other	pages	or	to	certain	
sections	within	the	page.	This	would	
be	a	section	with	navigation	links.

• Here	is	an	example	of	a	major	block	of	
navigation	links:

<nav>

Home
Services
About	us

</nav>

• Result:

• Not	all	of	the	links	in	a	document	
should	be	inside	a <nav> element.	
The <nav> element	is	intended	only	
for	major	blocks	of	navigation	links.	
Typically,	the <footer> element	often	
has	a	list	of	links	that	don't	need	to	be	
in	a <nav> element.

82

article,	section	&	aside

83

The <article> Element

• Article is	a	self-contained,	
independent	piece	of	content	that	can	
be	used	and	distributed	separately	
from	the	rest	of	the	page	or	site.	This	
could	be	a	forum	post,	a	magazine	or	
newspaper	article,	a	blog	entry,	a	
comment,	an	interactive	widget	or	
gadget,	or	any	other	independent	
piece	of	content.

• The <article> element	replaces	
the <div> element	that	was	widely	
used	in	HTML4,	along	with	an	id	or	
class.

• <article>
<h1>The	article	title</h1>	
<p>Contents	of	the	article	

element</p>
</article>

• When	an <article> element	is	nested,	
the	inner	element	represents	an	
article	related	to	the	outer	element.	
For	example,	blog	post	comments	can	
be <article> elements	nested	in	
the <article> representing	the	blog	
post.

84

The <section> Element

• <section> is	a	logical	container	of	
the	page	or	article.
Sections	can	be	used	to	divide	up	
content	within	an	article.
For	example,	a	homepage	could	
have	a	section	for	introducing	the	
company,	another	for	news	items,	
and	still	another	for	contact	
information.

• Each <section> should	be	
identified,	typically	by	including	a	
heading	(h1-h6	element)	as	a	child	
of	the <section> element.

• <article>
<h1>Welcome</h1>
<section>

<h1>Heading</h1>
<p>content	or	image</p>

</section>
</article>

• If	it	makes	sense	to	separately	
syndicate	the	content	of	
a <section> element,	use	
an <article> element	instead.

85

The <aside> Element

• <aside> is	secondary	or	tangential	
content	which	could	be	considered	
separate	from	but	indirectly	related	to	
the	main	content.

• This	type	of	content	is	often	
represented	in	sidebars.

• When	an <aside> tag	is	used	within	
an <article> tag,	the	content	of	
the <aside> should	be	specifically	
related	to	that	article.

• <article>
<h1> Gifts	for	everyone	</h1>
<p> This	website	will	be	the	best	

place	for	choosing	gifts	</p>
<aside>

<p> Gifts	will	be	delivered	to	you	
within	24	hours	</p>

</aside>
</article>

• When	an <aside> tag	is	used	outside	
of	an <article> tag,	its	content	should	
be	related	to	the	surrounding	content.

86

The	audio	Element

87

Audio	on	the	Web

• Before	HTML5,	there	was	no	
standard	for	playing	audio	files	on	
a	web	page.
The	HTML5 <audio> element	
specifies	a	standard	for	embedding	
audio	in	a	web	page.

• There	are	two	different	ways	to	
specify	the	audio	source	file's	URL.	
The	first	uses	the	source	attribute:
<audio src="audio.mp3"	controls>
Audio	element	not	supported	by	
your	browser
</audio>

• The	second	way	uses	
the <source> element	inside	
the <audio> element:
<audio controls>

<source	src="audio.mp3"	
type="audio/mpeg">

<source	src="audio.ogg"	
type="audio/ogg">
</audio>

• Multiple <source> elements	can	be	
linked	to	different	audio	files.	The	
browser	will	use	the	first	
recognized	format.

88

Audio	on	the	Web

• The <audio> element	creates	an	
audio	player	inside	the	browser.

<audio controls>
<source	src="audio.mp3"	

type="audio/mpeg">
<source	src="audio.ogg"	

type="audio/ogg">
Audio	element	not	supported	by	

your	browser.	
</audio>

• Result:

• The	text	between	the <audio> and	
</audio>	tags	will	display	in	
browsers	that	do	not	support	
the <audio> element.

89

Attributes	of <audio>

• controls
Specifies	that	audio	controls	
should	be	displayed	(such	as	a	
play/pause	button,	etc.)

• autoplay
When	this	attribute	is	defined,	
audio	starts	playing	as	soon	as	it	
is	ready,	without	asking	for	the	
visitor's	permission.
<audio controls	autoplay>

• loop
This	attribute	is	used	to	have	the	
audio	replay	every	time	it	is	
finished.
<audio controls	autoplay	loop>

• Currently,	there	are	three	
supported	file	formats	for	
the <audio> element:	MP3,	
WAV,	and	OGG.

90

The	video	Element

91

Videos	in	HTML

• The	video	element	is	similar	to	the	audio	element.
You	can	specify	the	video	source	URL	using	an	attribute	in	a	video	element,	
or	using	source	elements	inside	the	video	element:

<video	controls>
<source	src="video.mp4"	type="video/mp4">
<source	src="video.ogg"	type="video/ogg">
Video	is	not	supported	by	your	browser

</video>

• Another	aspect	that	the	audio	and	video	elements	have	in	common	is	that	
the	major	browsers	do	not	all	support	the	same	file	types.	If	the	browser	
does	not	support	the	first	video	type,	it	will	try	the	next	one.

92

Attributes	of <video>

• Another	aspect	shared	by	both	the	audio	and	the	video	elements	is	that	
each	has controls, autoplay and loop attributes.

• In	this	example,	the	video	will	replay	after	it	finishes	playing:
<video	controls autoplay	loop>

<source	src="video.mp4"	type="video/mp4">
<source	src="video.ogg"	type="video/ogg">
Video	is	not	supported	by	your	browser

</video>

• Currently,	there	are	three	supported	video	formats	for	
the <video> element:	MP4,	WebM,	and	OGG.

93

The	progress	Element

94

Progress	Bar

• The <progress> element	provides	the	ability	
to	create	progress	bars	on	the	web.

• The	progress	element	can	be	used	within	
headings,	paragraphs,	or	anywhere	else	in	the	
body.

• Progress	Element	Attributes
Value:	Specifies	how	much	of	the	task	has	
been	completed.
Max:	Specifies	how	much	work	the	task	
requires	in	total.

• Example:
Status:	<progress min="0"	max="100"	
value="35">
</progress>

• Result:

• Use	the <progress> tag	in	conjunction	with	
JavaScript	to	dynamically	display	a	task's	
progress.

95

Web	Storage	API

96

HTML5	Web	Storage

• With	HTML5	web	storage,	websites	can	store	data	on	a	user's	local	
computer.
• Before	HTML5,	we	had	to	use JavaScript	cookies to	achieve	this	
functionality.

• The	Advantages	of	Web	Storage
- More	secure
- Faster
- Stores	a	larger	amount	of	data
- Stored	data	is	not	sent	with	every	server	request

• Local	storage	is	per	domain.	All	pages	from	one	domain	can	store	and	
access	the	same	data.

97

Types	of	Web	Storage	Objects

• There	are	two	types	of	web	storage	objects:
- sessionStorage()
- localStorage()

• Local	vs.	Session
- Session	Storage	is	destroyed	once	the	user	closes	the	browser
- Local	Storage	stores	data	with	no	expiration	date

• You	need	to	be	familiar	with	basic	JavaScript	in	order	to	understand	
and	use	the	API.

98

Working	with	Values

• The	syntax	for	web	storage	for	both	
local	and	session	storage	is	very	
simple	and	similar.
The	data	is	stored	as	key/value	pairs.

• Storing	a	Value:
localStorage.setItem("key1",	
"value1");

• Getting	a	Value:
//this	will	print	the	value
alert(localStorage.getItem("key1"));	

• Removing	a	Value:
localStorage.removeItem("key1");

• Removing	All	Values:
localStorage.clear();

• The	same	syntax	applies	to	the	session	
storage,	with	one	difference:	Instead	
of	localStorage,	sessionStorage is	
used.

99

Geolocation	API

100

What	is	the	Geolocation	API?

• In	HTML5,	the	Geolocation	API	is	used	to	obtain	the	user's	
geographical	location.

• Since	this	can	compromise	user	privacy,	the	option	is	not	available	
unless	the	user	approves	it.

• Geolocation	is	much	more	accurate	for	devices	with	GPS,	like	
smartphones	and	the	like.

101

Using	HTML	Geolocation

• The	Geolocation	API’s	main	method	is	getCurrentPosition,	which	retrieves	the	
current	geographic	location	of	the	user's	device.
navigator.geolocation.getCurrentPosition();

• Parameters:
showLocation (mandatory):	Defines	the	callback	method	that	retrieves	location	
information.
ErrorHandler(optional):	Defines	the	callback	method	that	is	invoked	when	an	
error	occurs	in	processing	the	asynchronous	call.
Options	(optional):	Defines	a	set	of	options	for	retrieving	the	location	
information.

• You	need	to	be	familiar	with	basic	JavaScript	in	order	to	understand	and	use	the	
API.

102

Presenting	Data

• User	location	can	be	presented	in	
two	ways: Geodetic and Civic.

1.	The	geodetic	way	to	describe	
position	refers	directly	to	latitude	
and	longitude.
2.	The	civic	representation	of	
location	data	is	presented	in	a	
format	that	is	more	easily	read	and	
understood	by	the	average	person.

Each	parameter	has	both	a	
geodetic	and	a	civic	representation:

• The	getCurrentPosition()	method	
returns	an	object	if	it	is	successful.	
The	latitude,	longitude,	and	
accuracy	properties	are	always	
returned.

103

Drag&Drop API

104

Making	Elements	Draggable

• The	drag	and	drop	feature	lets	you	"grab"	
an	object	and	drag	it	to	a	different	
location.
To	make	an	element	draggable,	just	set	
the draggable attribute	to	true:

• Any	HTML	element	can	be	draggable.

• The	API	for	HTML5	drag	and	drop	is	
event-based.

• Example:

<!DOCTYPE	HTML>
<html>
<head>
<script>
function	allowDrop(ev)	{
ev.preventDefault();
}

function	drag(ev)	{
ev.dataTransfer.setData("text",	ev.target.id);
}

function	drop(ev)	{
ev.preventDefault();
var data	=	ev.dataTransfer.getData("text");
ev.target.appendChild(document.getElementById(data));
}
</script>
</head>
<body>

<div	id="box"	ondrop="drop(event)"
ondragover="allowDrop(event)"
style="border:1px	solid	black;	
width:200px;	height:200px"></div>

<img id="image"	src="sample.jpg"	draggable="true"
ondragstart="drag(event)"	width="150"	height="50"	alt=""	/>

</body>
</html>

105

Making	Elements	Draggable

• What	to	Drag
When	the	element	is	dragged,	the ondragstart attribute	calls	a	function,	
drag(event),	which	specifies	what	data	is	to	be	dragged.

• The dataTransfer.setData()method	sets	the	data	type	and	the	value	of	the	
dragged	data:
function	drag(ev)	{
ev.dataTransfer.setData("text",	ev.target.id);
}

• In	our	example,	the	data	type	is	"text"	and	the	value	is	the	ID	of	the	
draggable element	("image").

106

Making	Elements	Draggable

• Where	to	Drop
The ondragover event	specifies	where	the	dragged	data	can	be	dropped.	By	default,	data	
and	elements	cannot	be	dropped	in	other	elements.	To	allow	a	drop,	we	must	prevent	
the	default	handling	of	the	element.

• This	is	done	by	calling	the	event.preventDefault()	method	for	the ondragover event.

• Do	the	Drop
When	the	dragged	data	is	dropped,	a	drop	event	occurs.

• In	the	example	above,	the ondrop attribute	calls	a	function,	drop(event):
function	drop(ev)	{
ev.preventDefault();
var data	=	ev.dataTransfer.getData("text");
ev.target.appendChild(document.getElementById(data));
}

107

Making	Elements	Draggable

• The preventDefault()method	prevents	the	browser's	default	handling	of	
the	data	(default	is	open	as	link	on	drop).
• The	dragged	data	can	be	accessed	with	
the dataTransfer.getData()method.	This	method	will	return	any	data	that	
was	set	to	the	same	type	in	the	setData()	method.
• The	dragged	data	is	the	ID	of	the	dragged	element	("image").

• At	the	end,	the	dragged	element	is	appended	into	the	drop	element,	using	
the	appendChild()	function.

• Basic	knowledge	of	JavaScript	is	required	to	understand	and	use	the	API.
108

SVG

109

Drawing	Shapes

• SVG stands	for Scalable Vector Graphics,	and	is	used	to	draw	shapes	
with	HTML-style	markup.

• It	offers	several	methods	for	drawing	paths,	boxes,	circles,	text,	and	
graphic	images.

• SVG	is	not	pixel-based,	so	it	can	be	magnified	infinitely	with	no	loss	of	
quality.

110

Inserting	SVG	Images

• An	SVG	image	can	be	added	to	HTML	code	with	just	a	basic	image	tag	
that	includes	a	source	attribute	pointing	to	the	image:

• SVG	defines	vector-based	graphics	in	XML	format.

111

Drawing	a	Circle

• To	draw	shapes	with	SVG,	you	first	
need	to	create	an SVG element	tag	
with	two	attributes:	width	and	
height.
<svg width="1000"	
height="1000"></svg>
• To	create	a	circle,	add	
a <circle> tag:
<svg width="2000"	height="2000">

<circle cx="80"	cy="80"	r="50"	
fill="green"	/>
</svg>

- cx pushes	the	center	of	the	circle	
further	to	the	right	of	the	screen
- cy pushes	the	center	of	the	circle	
further	down	from	the	top	of	the	
screen
- r defines	the	radius
- fill determines	the	color	of	our	
circle
- stroke adds	an	outline	to	the	circle

112

Drawing	a	Circle

• Result:

• Every	element	and	every	attribute	in	SVG	files	can	be	animated.

113

Other	Shape	Elements

• <rect> defines	a	rectangle:

<svg width="2000"	
height="2000">

<rect width="300"	
height="100"	x="20"	y="20"	
fill="green"	/>
</svg>

• The	following	code	will	draw	a	
green-filled	rectangle.

• Result:

114

Other	Shape	Elements

• <line> defines	a	line	segment:

<svg width="400"
height="410">

<line x1="10"	y1="10"	
x2="200"	y2="100"
style="stroke:#000000; stroke-
linecap:round;
stroke-width:20" />
</svg>

• Result:

• (x1,	y1)	define	the	start	
coordinates(x2,	y2)	define	the	end	
coordinates.

115

Other	Shape	Elements

• <polyline> defines	shapes	built	from	
multiple	line	definitions:

<svg width="2000"	height="500">
<polyline style="stroke-

linejoin:miter;	stroke:black;	
stroke-width:12;	fill:	none;"
points="100	100,	150	150,	200	100"	
/>
</svg>

• Points	are	the	polyline's	coordinates.
• The	code	below	will	draw	a	black	
check	sign:	

• Result:

• The	width	and	height	attributes	of	
the <rect> element	define	the	height	
and	the	width	of	the	rectangle.

116

<ellipse> and <polygon>

• Ellipse
The	<ellipse>	is	similar	to	the	
<circle>,	with	one	exception:
• You	can	independently	change	the	
horizontal	and	vertical	axes	of	its	
radius,	using	
the rx and ry attributes.

<svg height="500"	width="1000">
<ellipse cx="200"	cy="100"	

rx="150"	ry="70"	style="fill:green"	
/>
</svg>

• Result:

117

<ellipse> and <polygon>

• Polygon
The <polygon> element	is	used	to	
create	a	graphic	with	at	least	three	
sides.	The	polygon	element	is	
unique	because	it	automatically	
closes	off	the	shape	for	you.

<svg width="2000"	height="2000">
<polygon points="100	100,	200	

200,	300	0"	
style="fill:	green;	stroke:black;"	/>
</svg>

• Result:

• Polygon	comes	from	Greek.	"Poly"	
means	"many"	and	"gon"	means	
"angle."

118

HTML5	Forms

119

HTML5	Forms

• HTML5	brings	many	features	and	improvements	to	web	form	creation.	
There	are	new	attributes	and	input	types	that	were	introduced	to	help	
create	better	experiences	for	web	users.

• Form	creation	is	done	in	HTML5	the	same	way	as	it	was	in	HTML4:
<form>

<label>Your	name:</label>
<input id="user"	name="username"	type="text"	/>

</form>

• Use	the	novalidate attribute	to	avoid	form	validation	on	submissions.

120

New	Attributes

• HTML5	has	introduced	a	new	
attribute	called placeholder.	
On <input> and <textarea> elemen
ts,	this	attribute	provides	a	hint	to	
the	user	of	what	information	can	
be	entered	into	the	field.

<form>
<label	for="email">Your	e-mail	

address:	</label>	
<input type="text"	

name="email"	
placeholder="email@example.com
"	/>	
</form>

• Result:

121

New	Attributes

• The autofocus attribute	makes	
the	desired	input	focus	when	
the	form	loads:

<form>
<label	for="email">Your	e-

mail	address:	</label>	
<input type="text"	

name="email"	autofocus/>
</form>

• Result:

• The	required	attribute	tells	the	
browser	that	the	input	is	
required.

122

Forms	with	Required	Fields

• The	"required"	attribute	is	used	to	make	the	
input	elements	required.

<form autocomplete="off">
<label	for="e-mail">Your	e-mail	address:	

</label>
<input name="Email"	type="text"	required	

/>
<input type="submit"	value="Submit"/>

</form>

• The	form	will	not	be	submitted	without	filling	
in	the	required	fields.

• Result:

• The autocomplete attribute	specifies	whether	
a	form	or	input	field	should	have	
autocomplete	turned	on	or	off.

• When	autocomplete	is	on,	the	browser	
automatically	complete	values	based	on	
values	that	the	user	has	entered	before.

123

Forms	with	Required	Fields

• HTML5	added	several	new	input	types:
- color
- date
- datetime
- datetime-local
- email
- month
- number
- range
- search
- tel
- time
- url
- week

• New	input	attributes	in	HTML5:
- autofocus
- form
- formaction
- formenctype
- formmethod
- formnovalidate
- formtarget
- height	and	width
- list
- min	and	max
- multiple
- pattern	(regexp)
- placeholder
- required
- step

• Input	types	that	are	not	supported	by	old	web	browsers,	will	behave	as	input	type	text.
124

Creating	a	Search	Box

• The	new search input	type	can	
be	used	to	create	a	search	box:

<input id="mysearch"	
name="searchitem"	
type="search"	/>

• Result:

• You	must	remember	to	set	a	
name	for	your	input;	otherwise,	
nothing	will	be	submitted.

125

Search	Options

• The <datalist> tag	can	be	used	to	
define	a	list	of	pre-defined	options	
for	the	search	field:

<input id="car"	type="text"	
list="colors"	/>
<datalist id="colors">

<option	value="Red">
<option	value="Green">
<option	value="Yellow">

</datalist>

• Result:

• <option> defines	the	options	in	a	drop-
down	list	for	the	user	to	select.

• The	ID	of	the	datalist element	must	
match	with	the	list	attribute	of	the	input	
box.

126

Creating	More	Fields

• Some	other	new	input	types	
include email, url,	and tel:
<input id="email"	name="email"	
type="email"	
placeholder="example@example.com"	/>

<input id="url"	name="url"	type="url"	
placeholder="example.com"	/>

<input id="tel"	name="tel"	type="tel"	
placeholder="555.555.1211"	/>

• These	are	especially	useful	when	opening	
a	page	on	a	modern	mobile	device,	which	
recognizes	the	input	types	and	opens	a	
corresponding	keyboard	matching	the	
field's	type: • These	new	types	make	it	easier	to	

structure	and	validate	HTML	forms.
127

What	is	CSS?

128

Welcome	to	CSS!

• CSS	stands	for Cascading Style Sheets.

- Cascading refers	to	the	way	CSS	applies	one	style	on	top	of	another.
- Style	Sheets control	the	look	and	feel	of	web	documents.

• CSS and HTML work	hand	in	hand:
- HTML	sorts	out	the	page	structure.
- CSS	defines	how	HTML	elements	are	displayed.

• To	understand	CSS,	you	should	already	have	a	basic	knowledge	of	
HTML.

129

Why	Use	CSS?

• CSS	allows	you	to	apply	specific	styles	to	specific	HTML	elements.

• The	main	benefit	of	CSS	is	that	it	allows	you	to	
separate style from content.

• Using	just	HTML,	all	the	styles	and	formatting	are	in	the	same	place,	
which	becomes	rather	difficult	to	maintain	as	the	page	grows

• All	formatting	can	(and should)	be	removed	from	the	HTML	
document	and	stored	in	a	separate	CSS	file.

130

Inline,	Embedded,	External	

CSS

131

Inline	CSS

• Using	an	inline	style	is	one	of	the	ways	to	
insert	a	style	sheet.	With	an	inline	style,	a	
unique	style	is	applied	to	a	single	
element.

• In	order	to	use	an	inline	style,	add	
the style	attribute to	the relevant	tag.

• The	example	below	shows	how	to	create	
a	paragraph	with	a	gray	background	and	
white	text:
<p	style="color:white;	background-
color:gray;">

This	is	an	example	of	inline	styling.	
</p>

• Result:

• The	style	attribute	can	contain	any	CSS	
property.

132

Embedded/Internal	CSS

• Internal	styles	are	defined	within	
the <style> element,	inside	the head section	of	an	
HTML	page.

• For	example,	the	following	code	
styles all paragraphs:
<html>

<head>
<style>

p	{
color:white;
background-color:gray;
}

</style>
</head>
<body>

<p>This	is	my	first	paragraph.	</p>
<p>This	is	my	second	paragraph.	</p>

</body>
</html>

• All	paragraphs	have	a	white	font	and	a	gray	
background:

• An	internal	style	sheet	may	be	used	if	one	single	
page	has	a	unique	style.

133

External	CSS

• With	this	method,	all	styling	rules	are	
contained	in	a	single	text	file,	which	is	
saved	with	the .css extension.

• This	CSS	file	is	then	referenced	in	the	
HTML	using	the <link> tag.	The	<link>	
element	goes	inside	the	head	section.

• Here	is	an	example:
The	CSS:
p	{

color:white;
background-color:gray;

}

• The	HTML:

<head>
<link rel="stylesheet"	

href="example.css">
</head>
<body>

<p>This	is	my	first	paragraph.</p>
<p>This	is	my	second	paragraph.	

</p>
<p>This	is	my	third	paragraph.	</p>

</body>

134

External	CSS

• Result:

• Both	relative	and	absolute	paths	can	be	used	to	define	the href for	
the	CSS	file.	In	our	example,	the	path	is	relative,	as	the	CSS	file	is	in	
the	same	directory	as	the	HTML	file.

135

CSS	Rules	and	Selectors

136

CSS	Syntax

• CSS	is	composed	of	style	rules	that	
the	browser	interprets	and	then	
applies	to	the	corresponding	
elements	in	your	document.
A	style	rule	has	three	
parts: selector, property,	
and value.

• For	example,	the	headline	color	
can	be	defined	as:
h1	{	color:	orange;	}

• Where:

• The	selector	points	to	the	HTML	
element	you	want	to	style.
The	declaration	block	contains	one	
or	more	declarations,	separated	by	
semicolons.
• Each	declaration	includes	a	
property	name	and	a	value,	
separated	by	a	colon.

137

Type	Selectors

• The	most	common	and	easy	to	understand	selectors	are type	selectors.	
This	selector	targets	element	types	on	the	page.

• For	example,	to	target	all	the	paragraphs	on	the	page:
p	{

color:	red;
font-size:130%;

}

• A	CSS	declaration	always	ends	with	a	semicolon,	and	declaration	groups	
are	surrounded	by	curly	braces.

138

id	and	class	Selectors

• id	selectors allow	you	to	style	an	
HTML	element	that	has	
an id attribute,	regardless	of	their	
position	in	the	document	tree.	
Here	is	an	example	of	an	id	
selector:

• The	HTML:
<div id="intro">

<p>	This	paragraph	is	in	the	
intro	section.</p>
</div>
<p>	This	paragraph	is	not	in	the	
intro	section.</p>

• The	CSS:
#intro	{

color:	white;
background-color: gray;

}

• Result:

139

id	and	class	Selectors

• To	select	an	element	with	a	specific	
id,	use	a	hash	character,	and	then	
follow	it	with	the	id	of	the	element.

• Class	selectors work	in	a	similar	
way.	The	major	difference	is	that	
IDs	can	only	be	applied	once	per	
page,	while	classes	can	be	used	as	
many	times	on	a	page	as	needed.

• In	the	example	below,	both	
paragraphs	having	the	class	"first"	
will	be	affected	by	the	CSS:

• The	HTML:
<div>

<p	class="first">This	is	a	
paragraph</p>

<p>	This	is	the	second	
paragraph.	</p>
</div>
<p	class="first">	This	is	not	in	the	
intro	section</p>
<p>	The	second	paragraph	is	not	in	
the	intro	section.	</p>

• The	CSS:
.first	{font-size: 200%;}

140

id	and	class	Selectors

• To	select	elements	with	a	specific	class,	use	a	period	character,	
followed	by	the	name	of	the	class.

• Do NOT start	a	class	or	id	name	with	a	number!

141

Descendant	Selectors

• These	selectors	are	used	to	select	
elements	that	are	descendants	of	another	
element.	When	selecting	levels,	you	can	
select	as	many	levels	deep	as	you	need	
to.

• For	example,	to	target	only		
elements	in	the	first	paragraph	of	the	
"intro"	section:

• The	HTML:
<div	id="intro">

<p	class="first">This	is	a		
paragraph.</p>

<p>	This	is	the	second	paragraph.	</p>
</div>
<p	class="first">	This	is	not	in	the	intro	
section.</p>
<p>	The	second	paragraph	is	not	in	the	
intro	section.	</p>

• The	CSS:
#intro	.first	em {

color:	pink;	
background-color:gray;

}

142

Descendant	Selectors

• As	a	result,	only	the	elements	selected	will	be	affected:

• The	descendant	selector	matches	all	elements	that	are	descendants	
of	a	specified	element.

143

CSS	Comments

144

Comments

• Comments	are	used	to	explain	your	
code,	and	may	help	you	when	you	
edit	the	source	code	later.	Comments	
are	ignored	by	browsers.

• A	CSS	comment	look	like	this:
/*	Comment	goes	here	*/

• Example:
p	{	

color:	green;	
/*	This	is	a	comment	*/
font-size: 150%;

}

• The	comment	does	not	appear	in	the	
browser:

• Comments	can	also	span	multiple	
lines.

145

Style	Cascade	and	

Inheritance

146

Cascade

• The	final	appearance	of	a	web	page	is	a	result	of	different	styling	
rules.

• The	three	main	sources	of	style	information	that	form	a	cascade	are:
- The	stylesheet	created	by	the author	of	the	page
- The browser's	default	styles
- Styles	specified by	the	user

• CSS	is	an	acronym	for	Cascading	Style	Sheets.

147

Inheritance

• Inheritance	refers	to	the	way	
properties	flow	through	the	page.	
A	child	element	will	usually	take	on	
the	characteristics	of	the	parent	
element	unless	otherwise	defined.

• For	example:

• <html>
<head>

<style>
body	{

color:	green;
font-family: Arial;

}
</style>

</head>
<body>	

<p>
Text	inside	the	paragraph.	

</p>
</body>

</html>

148

Inheritance

• Result:

• Since	the	paragraph	tag	(child	element)	is	inside	the	body	tag	(parent	
element),	it	takes	on	any	styles	assigned	to	the	body	tag.

149

Text	font-family

150

The	font-family	Property

• The	font-family	property	specifies	
the	font	for	an	element.
There	are	two	types	of	font	family	
names:
- font	family:	a	specific	font	family	
(like	Times	New	Roman	or	Arial)
- generic	family:	a	group	of	font	
families	with	a	similar	look	(like	
Serif	or	Monospace)

• Here	is	an	example	of	different	font	
styles:

151

The	font-family	Property

• The	HTML:
<p	class="serif">

This	is	a	paragraph	shown	in	serif	font.
</p>
<p	class="sansserif">

This	is	a	paragraph	shown	in	sans-serif	
font.
</p>	
<p	class="monospace">

This	is	a	paragraph	shown	in	
monospace	font.
</p>	
<p	class="cursive">

This	is	a	paragraph	shown	in	cursive	
font.
</p>	
<p	class="fantasy">

This	is	a	paragraph	shown	in	fantasy	
font.
</p>	

• The	CSS:
p.serif {

font-family: "Times	New	Roman",	
Times,	serif;
}
p.sansserif {

font-family: Helvetica,	Arial,	sans-serif;
}
p.monospace {

font-family: "Courier	New",	Courier,	
monospace;
}
p.cursive {

font-family: Florence,	cursive;
}
p.fantasy {

font-family: Blippo,	fantasy;
}

152

The	font-family	Property

• Result:

• Separate	each	value	with	a comma to	indicate	that	they	are	alternatives.
• If	the	name	of	a	font	family	is	more	than	one	word,	it	must	be	in	quotation	
marks: "Times	New	Roman".

153

The	font-family	Property

• The	font-family	property	should	hold	
several	font	names	as	a	"fallback"	
system.	When	specifying	a	web	font	in	
a	CSS	style,	add	more	than	one	font	
name,	in	order	to	avoid	unexpected	
behaviors.	If	the	client	computer	for	
some	reason	doesn't	have	the	one	
you	choose,	it	will	try	the	next	one.

• It	is	a	good	practice	to	specify	a	
generic	font	family,	to	let	the	browser	
pick	a	similar	font	in	the	generic	
family,	if	no	other	fonts	are	available.

• body	{
font-family: Arial,	"Helvetica	Neue",	

Helvetica,	sans-serif;
}

• If	the	browser	does	not	support	the	
font Arial,	it	tries	the	next	fonts	
(Helvetica	Neue,	then Helvetica).	If	
the	browser	doesn't	have	any	of	
them,	it	will	try	the	generic sans-serif.

• Remember	to	use	quotation	marks	if	
the	font	name	consists	of	more	than	
one	word.

154

Arabic	Text	font-family

155

Text	font-size

156

The	font-size	Property

• The	font-size	property	sets	the	size	of	a	font.	One	way	to	set	the	size	
of	fonts	on	the	web	is	to	use keywords. For	example xx-
small, small,medium, large, larger,	etc.

157

The	font-size	Property

• The	HTML:

<p	class="small">
Paragraph	text	set	to	be	small

</p>
<p	class="medium">

Paragraph	text	set	to	be	medium
</p>
<p	class="large">

Paragraph	text	set	to	be	large
</p>
<p	class="xlarge">

Paragraph	text	set	to	be	very	
large
</p>

• The	CSS:
p.small {

font-size: small;
}
p.medium {

font-size:medium;
}
p.large {

font-size: large;
}
p.xlarge {

font-size: x-large;
}

158

The	font-size	Property

• Result:

• Keywords	are	useful	if	you	do	not	want	the	user	to	be	able	to	increase	
the	size	of	the	font	because	it	will	adversely	affect	your	site's	
appearance.

159

The	font-size	Property

• You	can	also	use	numerical	values	in pixels or ems to	manipulate	font	size.

• Setting	the	font	size	in	pixel	values	(px)	is	a	good	choice	when	you	need	
pixel	accuracy,	and	it	gives	you	full	control	over	the	text	size.

• The em size	unit	is	another	way	to	set	the	font	size	(em is	a	relative	size	
unit).	It	allows	all	major	browsers	to	resize	the	text.	If	you	haven't	set	the	
font	size	anywhere	on	the	page,	then	it	is	the	browser	default	size,	which	
is 16px.

• To	calculate	the	em size,	just	use	the	following	formula: em =	pixels	/	16

160

The	font-size	Property

• For	example:

h1	{
font-size: 20px;

}

h1	{
font-size: 1.25em;	

}

• Both	of	the	examples	will	
produce	the	same	result	in	the	
browser,	
because 20/16=1.25em.

• Try	different	combinations	of	
text	size	and	page	zooming	in	a	
variety	of	browsers	to	ensure	
that	the	text	remains	readable.

161

Text	font-style

162

The	font-style	Property

• he	font-style	property	is	typically	
used	to	specify	italic	text.

• The	HTML:
<p	class="italic">This	is	a	paragraph	
in	italic	style.</p>

• The	CSS:
p.italic {

font-style: italic;
}

• Result:

163

The	font-style	Property

• The	font-style	property	has	three	
values: normal, italic,	and oblique.
Oblique	is	very	similar	to	italic,	but	
less	supported.

• The	HTML:

<p	class="normal">This	paragraph	
is	normal.</p>
<p	class="italic">This	paragraph	is	
italic.</p>
<p	class="oblique">This	paragraph	
is	oblique.</p>

• The	CSS:
p.normal {

font-style: normal;
}
p.italic {

font-style: italic;
}
p.oblique {

font-style: oblique;
}

• The	HTML <i> tag	will	produce	
exactly	the	same	result	as	the italic	
font	style.

164

Text	font-weight

165

The	font-weight	Property

• The	font-weight	controls	the	
boldness	or	thickness	of	the	text.	
The	values	can	be	set	
as normal (default	
size), bold, bolder,	and lighter.

• The	HTML:
<p	class="light">This	is	a	font	with	
a	"lighter"	weight.</p>
<p	class="bold">This	is	a	font	with	
a	"bold"	weight.</p>
<p	class="bolder">This	is	a	font	
with	a	"bolder"	weight.</p>

• The	CSS:

p.light {	
font-weight: lighter;

}
p.bold {	

font-weight: bold;
}
p.bolder {

font-weight: bolder;
}

166

The	font-weight	Property

• Result:

167

The	font-weight	Property

• You	can	also	define	the	font	weight	
with	a	number	from 100 (thin)	
to 900 (thick),	according	to	how	
thick	you	want	the	text	to	be.
400	is	the	same	as	normal,	and	700	
is	the	same	as	bold.

• The	HTML:
<p	class="light">This	is	a	font	with	
a	"lighter"	weight.</p>
<p	class="thick">This	is	a	font	with	
a	"bold"	weight.</p>
<p	class="thicker">This	is	a	font	
with	a	"700"	weight.</p>

• The	CSS:
p.light {

font-weight: lighter;
}
p.thick {

font-weight: bold;
}
p.thicker {

font-weight: 700;
}

168

The	font-weight	Property

• Result:

• The	HTML tag	also	makes	the	text bold.

169

Text	color

170

The	color	Property

• The	CSS color property	specifies	
the	color	of	the	text.
One	method	of	specifying	the	
color	of	the	text	is	using	a color	
name:	like	red,	green,	blue,	etc.
Here's	an	example	of	changing	
the	color	of	your	font.

• The	HTML:
<p	class="example">The	text	
inside	the	paragraph	is	
green.</p>
The	text	outside	the	paragraph	is	
black	(by	default).	

• The	CSS:
p.example {

color:	green;
}

171

The	color	Property

• Result:

172

The	color	Property

• Another	way	of	defining	colors	is	
using hexadecimal	
values and RGB.
• Hexadecimal	form	is	a	pound	sign	
(#)	followed	by	at	most, 6	hex	
values (0-F).
• RGB	defines	the	individual	values	
for Red, Green,	and Blue.

• In	the	example	below,	we	use	
hexadecimal	value	to	set	the	
heading	color	to	blue,	and	RGB	
form	to	make	the	paragraph	red.

• The	HTML:
<h1>This	is	a	heading</h1>
<p	class="example">This	is	a	
paragraph</p>

• The	CSS:
h1	{

color:	#0000FF;
}
p.example {

color:	rgb(255,0,0);
}

173

The	color	Property

• Result:

174

Aligning	Text	Horizontally

175

The	text-align	Property

• The	text-align	property	specifies	the	horizontal	alignment	of	text	in	an	
element.	By	default,	text	on	your	website	is	aligned	to	the	left.	However,	at	
times	you	may	require	a	different	alignment.

• text-align	property	values	are	as	follows: left, right, center,	and justify.

• The	HTML:
<p	class="left">This	paragraph	is	aligned	to	left.</p>
<p	class="right">This	paragraph	is	aligned	to	right.</p>
<p	class="center">This	paragraph	is	aligned	to	center.</p>

176

The	text-align	Property

• The	CSS:

p.left {
text-align: left;

}
p.right {

text-align: right;
}
p.center {

text-align: center;
}

• Result:

• When	text-align	is	set	to	"justify",	each	line	is	
stretched	so	that	every	line	has	equal	width,	
and	the	left	and	right	margins	are	straight	(as	
in	magazines	and	newspapers).

177

Aligning	Text	Vertically

178

The	vertical-align	Property

• The	vertical-align	property	sets	an	element's	vertical	alignment.	Commonly	
used	values	are top,middle,	and bottom.

• The	example	below	shows	how	to	vertically	align	the	text	between	the	
table.

• The	HTML:
<table	border="1"	cellpadding="2"	cellspacing="0"	style="height:	150px;">

<tr>
<td	class="top">Top</td>
<td	class="middle">Middle</td>
<td	class="bottom">Bottom</td>

</tr>
</table>

179

The	vertical-align	Property

• The	CSS:

td.top {
vertical-align: top;

}
td.middle {

vertical-align: middle;
}
td.bottom {

vertical-align: bottom;
}

• Result:

180

The	vertical-align	Property

• The	vertical-align	property	also	takes	the	following	
values: baseline, sub, super, % and px (or	pt,	cm).

• The	example	below	shows	the	difference	between	them.

• The	HTML:

<p>This	is	an	inline	text	example.</p>
<p>This	is	a	sub	line	text	example.</p>
<p>	This	is	a	super	line	text	
example.</p>
<p>	This	is	a	pixel	example.</p>

181

The	vertical-align	Property

• The	CSS:
span.baseline {

vertical-align: baseline;
}
span.sub {

vertical-align: sub;
}
span.super {

vertical-align: super;
}
span.pixel {

vertical-align: -10px;
}

• Result:

• Instead	of px values,	you	can	
use pt (points), cm (centimeters)	
and % (percentage)	values.

182

The	vertical-align	Property

• Vertical	align	property	does	not	act	the	same	way	for	all	elements.

• For	example,	some	additional	CSS	styling	is	needed	for	div	elements.

• The	HTML:

<div	class="main">
<div	class="paragraph">

This	text	is	aligned	to	the	middle
</div>

</div>

183

The	vertical-align	Property

• The	CSS:

.main	{
height:	150px;	width:	400px;
background-color: LightSkyBlue;
display: inline-table;
}
.paragraph	{
display: table-cell;
vertical-align: middle;
}

• Result:

• display: inline-table; and display: table-
cell; styling	rules	are	applied	to	make	the	
vertical-align	property	work	with	divs.

184

text-decoration

185

The	text-decoration	Property

• The	text-decoration	property	specifies	how	the	text	will	be	decorated.

• Commonly	used	values	are:
none - The	default	value,	this	defines	a	normal	text
inherit - Inherits	this	property	from	its	parent	element
overline - Draws	a	horizontal	line	above	the	text
underline - Draws	a	horizontal	line	below	the	text
line-through - draws	a	horizontal	line	through	the	text	(substitutes	the	
HTML <s> tag)

• The	example	below	demonstrates	the	difference	between	each	value.

186

The	text-decoration	Property

• The	HTML:

<p	class="none">This	is	default	
style	of	the	text	(none).</p>
<p	class="inherit">This	text	inherits	
the	decoration	of	the	parent.</p>
<p	class="overline">This	is	
overlined text.</p>
<p	class="underline">This	is	
underlined	text.</p>
<p	class="line-through">This	is	
lined-through	text.</p>

• The	CSS:
p.none {

text-decoration: none;
}
p.inherit {

text-decoration: inherit;
}
p.overline {

text-decoration: overline;
}
p.underline {

text-decoration: underline;
}
p.line-through	{

text-decoration: line-through;
}

187

The	text-decoration	Property

• You	can	combine	the underline, overline,	or line-through values	in	a	
space-separated	list	to	add	multiple	decoration	lines.

188

The	text-decoration	Property

• Another	value	of	text-decoration	property	is blink which	makes	the	
text	blink.

• CSS	syntax	looks	like	this:text-decoration: blink;

• This	value	is	valid	but	is	deprecated	and	most	browsers	ignore	it.

189

text-transform

190

The	text-transform	Property

• The	text-transform	CSS	property	specifies	how	to	capitalize	an	
element's	text.	For	example,	it	can	be	used	to	make	text	appear	with	
each	word	capitalized.

• The	HTML:

<p	class="capitalize">
The	value	capitalize	transforms	the	first	
character	in	each	word	to	uppercase;	
all	other	characters	remain	unaffected.

</p>

191

The	text-transform	Property

• The	CSS:

p.capitalize {
text-transform: capitalize;

}

• Result:

192

text-transform	Values

• Using	text-transform	property	you	can	make	text	appear	in	all-
uppercase	or	all-lowercase.	Here	is	an	example:

• The	HTML:

<p	class="uppercase">This	value	transforms	all	characters	to	
uppercase.</p>
<p	class="lowercase">This	value	transforms	all	characters	to	
lowercase.</p>

193

text-transform	Values

• The	CSS:

p.uppercase {
text-transform: uppercase;

}
p.lowercase {

text-transform: lowercase;
}

• Result:

• The	value none will	produce	no	
capitalization	effect	at	all.

194

letter-spacing

195

The	letter-spacing	Property

• The	letter-spacing	property	specifies	the space	between	
characters in	a	text.	The	values	can	be	set	as:
- normal defines	the	default	style	with	no	extra	space	between	
characters
- length defines	an	extra	space	between	characters	using	
measurement	units	like	px,	pt,	cm,	mm,	etc.;
- inherit inherits	the	property	from	its	parent	element;

• The	HTML:
<p	class="normal">This	paragraph	has	no	additional	letter-spacing	
applied.</p>
<p	class="positive	">This	paragraph	is	letter-spaced	at	4px.</p>

196

The	letter-spacing	Property

• The	CSS:

p.normal {	
letter-spacing: normal;

}
p.positive {	

letter-spacing: 4px;	

}

• Result:

197

Using	Negative	Values

• For	defining	an	extra	space	between	characters,	negative	values	are	
also	permitted.
Here	is	an	example	demonstrating	the	difference	
between positive and negative values:

• The	HTML:

<p	class="positive">This	paragraph	is	letter-spaced	at	4px.</p>
<p	class="negative">This	paragraph	is	letter-spaced	at	-1.5px</p>

198

Using	Negative	Values

• The	CSS:

p.positive {	
letter-spacing: 4px;	

}
p.negative {	

letter-spacing: -1.5px;	
}	

• Result:

• Always	test	your	result,	to	
ensure	the	text	is	readable.

199

Width	and	Height

200

CSS	Width	and	Height

• To	style	a <div> element	to	have	
a	total	width	and	height	
of 100px:

• The	HTML:

<div>The	total	width	and	height	
of	this	element	is	100px.</div>

• The	CSS:
div	{

border: 5px	solid	green;	
width:	90px;
height:	90px;

}

201

CSS	Width	and	Height

• Result:

• The	total	width	and	height	of	the	box	will	be	the	90px+5px	
(border)+5px(border)	=	100px;

202

Width	and	Height	Measurement

• The	width	and	height	of	an	
element	can	be	also	assigned	
using percents.
In	the	example	below	the	width	of	
an	element	is	assigned	in	
percentages,	the	height	is	in	pixels.

• The	HTML:
<div>The	total	width	of	this	
element	is	100%	
and	the	total	height	is	
100px	.</div>

• The	CSS:
div	{

border: 5px	solid	green;	
width:	100%;
height:	90px;

}

203

Width	and	Height	Measurement

• Result:

204

The	Minimum	and	Maximum	Sizes

• To	set	the	minimum	and	maximum	
height	and	width	of	an	element,	
you	can	use	the	following	
properties:

min-width - the	minimum	width	of	
an	element
min-height - the	minimum	height	
of	an	element
max-width - the	maximum	width	
of	an	element
max-height - the	maximum	height	
of	an	element

• In	the	example	below,	we	set	the	
minimum	height	and	maximum	
width	of	different	paragraphs	to	
100px.

• The	HTML:
<p	class="first">The	
minimum	height		
of	this	paragraph	is	set	to	
100px.</p>
<p	class="second">The	
maximum	width		of	this	
paragraph	is	set	to	100px.</p>

205

The	Minimum	and	Maximum	Sizes

• The	CSS:

p.first {
border: 5px	solid	green;	
min-height: 100px;

}
p.second {

border: 5px	solid	green;	
max-width: 100px;

}

• Result:

206

background-color

207

The	background-color	Property

• The background-color property	
is	used	to	specify	the	
background	color	of	an	element.

• The	HTML:

<p>The	background	color	of	this	
page	is	set	to	LightSkyBlue.</p>

• The	CSS:
body	{

background-color:	#87CEFA;
}

• Result:

208

The	Background	Color	Values

• The	color	of	the	background	can	be	
defined	using	three	different	
formats:	a color	
name, hexadecimal	values,	
and RGB.

• In	the	example	below,	the	body,	h1,	
and	p	elements	are	assigned	
different	background	colors:

• The	HTML:
<h1>This	is	a	heading</h1>
<p>This	is	a	paragraph</p>

• The	CSS:
body	{

background-color: #C0C0C0;
}
h1	{

background-color:
rgb(135,206,235);

}
p	{

background-color: LightGreen;
}

209

The	Background	Color	Values

• Result:

210

background-image

211

The	background-image	Property

• The background-image property	sets	
one	or	several	background	images	in	
an	element.	Let's	set	a	background-
image	for	the	<body>	element.

• The	CSS:
body	{

background-image:
url("css_logo.png");
background-color: #e9e9e9;

}
• The url specifies	the	path	to	the	image	
file.	Both	relative	and	absolute	paths	
are	supported.

• Result:

• By	default,	a	background-image	is	
placed	at	the	top-left	corner	of	an	
element,	and	is	repeated	both	
vertically	and	horizontally	to	cover	the	
entire	element.

212

The	background-image	Property

• Background-image	can	be	set	not	only	
for	the	whole	page,	but	for	individual	
elements,	as	well.
Below	we	set	a	background	image	for	
the	<p>	element.
• The	HTML:
<p>This	paragraph	has	a	background	
image.</p>
• The	CSS:
p	{

padding: 30px;
background-image:
url("green_photo.jpg");
color:	white;	

}

• Result:

• To	specify	more	than	one	image,	just	
separate	the	URLs	with commas.

213

Styling	the	Lists

214

The	list-style-type	Property

• The	CSS	list	properties	allow	us	to	set	
different	list	item	markers.	In	HTML,	
there	are	two	types	of	lists:
• unordered	lists ()	- the	list	items	are	
marked	with	bullets

• ordered	lists ()	- the	list	items	are	
marked	with	numbers	or	letters

• With	CSS,	lists	can	be	styled	further,	
and	images	can	be	used	as	the	list	
item	marker.
• One	of	the	ways	is	to	use	the list-
style-type property,	which	can	be	set	
to circle, square, decimal, disc, lower-
alpha,	etc.

• The	HTML:
<ol class="lower-alpha">

Red
Green
Blue

<ul class="circle">

Red
Green
Blue

<ul class="square">

Red
Green
Blue

215

The	list-style-type	Property

• The	CSS:
ol.lower-alpha	{

list-style-type: lower-
alpha;
}
ul.circle {

list-style-type: circle;
}
ul.square {

list-style-type: square;
}

• Result:

• Some	of	the	values	are	for	unordered	
lists,	and	some	for	ordered	lists.

216

The	List	Image	and	Position

• There	are	also	other	list	properties,	
such	as:
• list-style-image - specifies	an	image	
to	be	used	as	the	list	item	marker.

• list-style-position - specifies	the	
position	of	the	marker	box	(inside,	
outside).

• In	the	example	below,	we	use	an	
image	as	the	list	item	marker,	and	
specify	the	position	to	be	inside	of	
the	content	flow.

• The	HTML:

<p>The	following	list	has	list-style-
position:
inside.</p>

Red
Green
Blue

217

The	List	Image	and	Position

• The	CSS:

ul {
list-style-image: url("logo.jpg");
list-style-position: inside;

}

• Result:

• "list-style-position: outside"	is	
the	default	value.

218

The	list-style	Property

• The list-style property	is	a	shorthand	
property	for	setting	list-style-type,	list-
style-image	and	list-style-position.	It	is	
used	to	set	all	of	the	list	properties	in	
one	declaration:
ul {

list-style:	square	outside	none;
}
• This	would	be	the	same	as	the	
longhand	version.
ul {

list-style-type: square;
list-style-position: outside;
list-style-image: none;

}

• Result:

• If	one	of	the	property	values	are	
missing,	the	default	value	for	the	
missing	property	will	be	inserted,	if	
any.

219

Customizing	the	Mouse	

Cursor

220

Setting	the	Mouse	Cursor	Style

• CSS	allows	you	to	set	your	desired	
cursor	style	when	you	mouse	over	
an	element.	For	example,	you	can	
change	your	cursor	into	a	hand	
icon,	help	icon,	and	much	more,	
rather	than	using	the	default	
pointer.
• In	the	example	below,	the	mouse	
pointer	is	set	to	a	help	icon	when	
we	mouse	over	the	span	element:

Do	you	need	help?

• Result:

221

The	cursor	Property	Values

• There	are	numerous	other	
possible	values	for	
the cursor property,	such	as:
• default - default	cursor
• crosshair - cursor	displays	as	
crosshair
• pointer - cursor	displays	hand	icon

• The	list	of	possible	values	is	
quite	long.	The	image	below	
demonstrates	the	various	
available	styles: • CSS	allows	you	to	set	your	desired	cursor	style	

when	you	mouse	over	an	element.

222

Introduction	to	JavaScript

223

Welcome	to	JavaScript

• JavaScript is	one	of	the	most	popular	programming	languages	on	
earth	and	is	used	to	add	interactivity	to	webpages,	process	data,	as	
well	as	create	various	applications	(mobile	apps,	desktop	apps,	
games,	and	more)

• Learning	the	fundamentals	of	a	language	will	enable	you	to	create	the	
program	you	desire,	whether	client-side	or	server-side.

224

Creating	Your	First	JavaScript

225

Your	First	JavaScript

• Let's	start	with	adding	JavaScript	to	
a	webpage.

• JavaScript	on	the	web	lives	inside	
the HTML document.

• In	HTML,	JavaScript	code	must	be	
inserted	
between <script> and </script> tag
s:
<script>
...
</script>

• JavaScript	can	be	placed	in	the	
HTML	
page's <body> and <head> section
s.
In	the	example	below,	we	placed	it	
within	the <body> tag.

• Remember	that	the	script,	which	is	
placed	in	the	head	section,	will	be	
executed	before	the	<body>	is	
rendered.	If	you	want	to	get	
elements	in	the	body,	it's	a	good	
idea	to	place	your	script	at	the	end	
of	the	body	tag.

226

Output

• Let's	use	JavaScript	to	print	
"Hello	World"	to	the	browser.
<html>

<head>	</head>
<body>

<script>
document.write("Hello	
World!");

</script>
</body>

</html>	

• The document.write() function	
writes	a string into	our	HTML	
document.	This	function	can	be	
used	to	write	text,	HTML,	or	
both.

• The document.write()method
should	be	used	only	for	testing.	
Other	output	mechanisms	
appear	in	the	upcoming	lessons.

227

Formatting	Text

• Just	like	in	HTML,	we	can	use	HTML	
tags	to	format	text	in	JavaScript.
For	example,	we	can	output	the	
text	as	a	heading.
<html>

<head>	</head>
<body>

<script>
document.write("<h1>
Hello	World!</h1>");

</script>
</body>

</html>

• Result:

• You	can	output	almost	everything	
in	the	webpage	using	JavaScript.	
Many	JavaScript	frameworks	use	
this	to	create	HTML	pages.

228

Adding	JavaScript	to	a	Web	

Page

229

JavaScript	in	<head>

• You	can	place	any	number	of	scripts	in	an	HTML	document.
• Typically,	the	script	tag	is	placed	in	the	head	of	the	HTML	document:
<html>

<head>
<script>
</script>

</head>
<body>
</body>

</html>	
• There	is	also	a	<noscript>	tag.	Its	content	will	be	shown	if	the	client's	
browser	doesn't	support	JS	scripts.

230

JavaScript	in	<body>

• Alternatively,	include	the	JavaScript	in	the	<body>	tag.
<html>

<head>	</head>
<body>

<script>
</script>

</body>
</html>
• It's	a	good	idea	to	place	scripts	at	the	bottom	of	the	<body>	element.
• This	can	improve	page	load,	because	HTML	display	is	not	blocked	by	
scripts	loading.

231

The <script> Tag

• The <script> tag	can	take	two	
attributes, language and type,	
which	specify	the	script's	type:
<script language="javascript"	
type="text/javascript">
</script>
• The language attribute	is	
deprecated,	and	should	not	be	
used.
• In	the	example	below,	we	created	
an	alert	box	inside	the	script	tag,	
using	the alert() function.

• <html>
<head>

<title></title>
<script
type="text/javascript">
alert("This	is	an	alert	box!");
</script>

</head>
<body>
</body>

</html>

232

Adding	JavaScript	to	a	Web	Page

• Result:

• The type attribute: <script type="text/javascript">	is	also	no	longer	
required,	as	JavaScript	is	the	default	HTML	scripting	language.

233

External	JavaScript

234

External	JavaScript

• Scripts	can	also	be	placed	
in external	files.

• External	scripts	are	useful	and	
practical	when	the	same	code	is	
used	in	a	number	of	different	
web	pages.

• JavaScript	files	have	the file	
extension	.js.

• Below,	we've	created	a	new text	

file,	and	called	it demo.js.

• Having	JS	scripts	in	separate	files	
makes	your	code	much	readable	
and	clearer.

235

External	JavaScript

• To	use	an	external	script,	put	the	
name	of	the	script	file	in	
the src (source)	attribute	of	
the <script> tag.

• Here	is	an	example:
<html>
<head>
<title>	</title>
<script src="demo.js"></script>

</head>
<body>
</body>

</html>

• Your demo.js file	includes	the	
following	JavaScript:

alert("This	is	an	alert	box!");

• External	scripts	cannot	
contain <script> tags.

236

External	JavaScript

• You	can	place	an	external	script	
reference	in	<head>	or	<body>,	
whichever	you	prefer.

• The	script	will	behave	as	if	it	
were	located	exactly	where	
the <script> tag	is	located.

• Placing	a	JavaScript	in	an	
external	file	has	the	following	
advantages:

- It	separates	HTML	and	code.
- It	makes	HTML	and	JavaScript	
easier	to	read	and	maintain.
- Cached	JavaScript	files	can	
speed	up	page	loads.

237

Comments	in	JavaScript

• Not	all	JavaScript	statements	are	
"executed".

• Code	after	a	double	slash	//,	or	
between	/*	and	*/,	is	treated	as	
a comment.

• Comments	are	ignored,	and	are	not	
executed.

• Single	line comments	use	double	
slashes.
<script>

//	This	is	a	single	line	comment

alert("This	is	an	alert	box!");
</script>

• It's	a	good	idea	to	make	a	
comment	about	the	logic	of	large	
functions	to	make	your	code	more	
readable	for	others.

238

Multiple-Line	Comments

• Everything	you	write	between	
/*and	*/	will	be	considered	as	a	
multi-line	comment.

• Here	is	an	example.
<script>

/*	This	code	
creates	an	
alert	box	*/
alert("This	is	an	alert	box!");

</script>

• Comments	are	used	to	describe	
and	explain	what	the	code	is	
doing.

239

Variables

240

Variables

• Variables are	containers	for	
storing	data	values.	The	value	of	
a variable can	change	
throughout	the	program.

• Use	the var keyword	to	declare	
a variable:
var x	=	10;

• In	the	example	above,	the	
value 10 is	assigned	to	
the variable x.

• JavaScript	is	case	sensitive.	For	
example,	the	
variables lastName and lastnam
e,	are	two	different	variables.

241

The	Equal	Sign

• In	JavaScript,	the	equal	sign	(=)	is	
called	the	"assignment"	
operator,	rather	than	an	"equal	
to"	operator.

• For	example, x	=	y will	assign	the	
value	of y to x.

• A variable can	be	declared	
without	a	value.	The	value	might	
require	some	calculation,	
something	that	will	be	provided	
later,	like	user	input.

• A variable declared	without	a	
value	will	have	the	
value undefined.

242

Using	Variables

• Let's	assign	a	value	to	
a variable and	output	it	to	the	
browser.
var x	=	100;
document.write(x);

• Result:

• Using	variables	is	useful	in	many	
ways.	You	might	have	a	
thousand	lines	of	code	that	may	
include	the variable x.	When	you	
change	the	value	of	x one	time,	
it	will	automatically	be	changed	
in all	places where	you	used	it.
• Every	written	"instruction"	is	
called	a statement.	JavaScript	
statements	are	separated	
by semicolons.

243

Naming	Variables

• JavaScript variable names	are	case-
sensitive.
In	the	example	below	we	changed	
x	to	uppercase:
var x	=	100;
document.write(X);

• This	code	will	not	result	in	any	
output,	as	x	and	X	are	two	different	
variables.

• Hyphens	are	not	allowed	in	
JavaScript.	It	is	reserved	for	
subtractions.

• Naming	rules:
- The	first	charactermust	be a	
letter,	an	underscore	(_),	or	a	dollar	
sign	($).	Subsequent	characters	
may	be	letters,	digits,	underscores,	
or	dollar	signs.
- Numbers	are not	allowed as	the	
first	character.
- Variable	names cannot include	
amathematical	or	logical	
operator in	the	name.	For	
instance, 2*something or this+that;
- JavaScript	namesmust	not	
contain	spaces.

244

Naming	Variables

• There	are	some	other	rules	to	
follow	when	naming	your	
JavaScript	variables:

- Youmust	not use	any special	
symbols,	likemy#num, num%,	etc.
- Be	sure	that	you	do	not	use	any	of	
the	following	JavaScript	reserved	
words.

• When	you	get	more	familiar	with	
JavaScript,	remembering	these	
keywords	will	be	much	easier.

245

Data	Types

246

Data	Types

• The	term data	type refers	to	the	
types	of	values	with	which	a	
program	can	work.	JavaScript	
variables	can	hold	many	data	
types,	such	
as numbers, strings, arrays,	and	
more.

• Unlike	many	other	programming	
languages,	JavaScript	does	not	
define	different	types	of	
numbers,	like	integers,	short,	
long,	floating-point,	etc.

• JavaScript	numbers	can	be	
written	with	or	without	
decimals.
var num =	42;	//	A	number	
without	decimals

• This variable can	be	easily	
changed	to	other	types	by	
assigning	to	it	any	other	data	
type	value,	like	num =	'some	
random string'.

247

Floating-Point	Numbers

• JavaScript	numbers	can	also	
have	decimals.

<script>
var price	=	55.55;
document.write(price);

</script>

• Result:

• JavaScript	numbers	are	always	
stored	as double	precision	
floating	point	numbers.

248

Strings

• JavaScript strings are	used	for	
storing	and	manipulating	text.

• A string can	be	any	text	that	
appears	within quotes.	You	can	
use	single	or	double	quotes.
var name	=	'John';
var text	=	"My	name	is	John	
Smith";

• You	can	use	quotes	inside	
a string,	as	long	as	they	don't	
match	the	quotes	surrounding	
the string.
var text	=	"My	name	is	'John'	";

• You	can	get	double	quotes	inside	
of	double	quotes	using	the	
escape	character	like	this:	\"	or	\'	
inside	of	single	quotes.

249

Strings

• As	strings	must	be	written	within	
quotes,	quotes	inside	
the string must	be	handled.	
The backslash	(\)	escape	
character turns	special	
characters	into string characters.

var sayHello =	'Hello	world!	\'I	
am	a	JavaScript	programmer.\' ';
document.write(sayHello);

• Result:

250

Strings

• The	escape	character	(\)	can	also	
be	used	to	insert	other	special	
characters	into	a string.
These	special	characters	can	be	
added	to	a	text string using	the	
backslash	sign.

• If	you	begin	a string with	a	single	
quote,	then	you	should	also	end	it	
with	a	single	quote.	The	same	rule	
applies	to	double	quotes.	
Otherwise,	JavaScript	will	become	
confused.

251

Booleans

• In	JavaScript	Boolean,	you	can	
have	one	of	two	values,	
either true or false.

• These	are	useful	when	you	need	
a	data	type	that	can	only	have	
one	of	two	values,	such	as	
Yes/No,	On/Off,	True/False.

• Example:

var isActive =	true;	
var isHoliday =	false;

• The	Boolean	value	of	0	
(zero), null, undefined,	
empty string is false.

• Everything	with	a	"real"	value	
is true.

252

Math	Operators

253

Arithmetic	Operators

• Arithmetic	operators	perform	arithmetic	functions	on	numbers	
(literals	or	variables).

254

Arithmetic	Operators

• In	the	example	below,	the	
addition	operator	is	used	to	
determine	the	sum	of	two	
numbers.

var x	=	10	+	5;
document.write(x);
//	Outputs	15

• You	can	add	as	many	numbers	or	
variables	together	as	you	want	
or	need	to.

var x	=	10;
var y	=	x	+	5	+	22	+	45	+	6548;
document.write(y);
//Outputs	6630

• You	can	get	the	result	of	a string expression	using	the	eval()	function,	
which	takes	a string expression	argument	like	eval("10	*	20	+	8")	and	
returns	the	result.	If	the	argument	is	empty,	it	returns undefined.

255

Multiplication

• The	multiplication	operator	(*)	
multiplies	one	number	by	the	
other.

var x	=	10	*	5;
document.write(x);

//	Outputs	50

• 10	*	'5'	or	'10'	*	'5'	gives	the	
same	result.	Multiplying	a	
number	with string values	like	
'sololearn'	*	5	returns	NaN (Not	
a	Number).

256

Division

• The	/	operator	is	used	to	
perform	division	operations:

var x	=	100	/	5;
document.write(x);

//	Outputs	20

• Remember	to	handle	cases	
where	there	could	be	a	division	
by	0.

257

The	Modulus

• Modulus	(%)	operator	returns	
the	division	remainder	(what	is	
left	over).

var myVariable =	26	%	6;

//myVariable equals	2

• In	JavaScript,	the	modulus	
operator	is	used	not	only	on	
integers,	but	also	on	floating	
point	numbers.

258

Increment	&	Decrement

• Increment	++

The	increment	operator	
increments	the	numeric	value	of	
its	operand	by	one.	If	placed	
before	the	operand,	it	returns	
the	incremented	value.	If	placed	
after	the	operand,	it	returns	the	
original	value	and	then	
increments	the	operand.

• Decrement	--

The	decrement	operator	
decrements	the	numeric	value	
of	its	operand	by	one.	If	placed	
before	the	operand,	it	returns	
the	decremented	value.	If	placed	
after	the	operand,	it	returns	the	
original	value	and	then	
decrements	the	operand.

259

Increment	&	Decrement

• Some	examples: • As	in	school	mathematics,	you	
can	change	the	order	of	the	
arithmetic	operations	by	using	
parentheses.

• Example: var x	=	(100	+	50)	*	3;

260

Assignment	Operators

261

Assignment	Operators

• Assignment	operators	assign	values	to	JavaScript	variables.

• You	can	use	multiple	assignment	operators	in	one	line,	such	as	x	-=	y	
+=	9.

262

Assignment	Operators

• Assignment	operators	assign	values	to	JavaScript	variables.

• You	can	use	multiple	assignment	operators	in	one	line,	such	as	x	-=	y	
+=	9.

263

Comparison	Operators

264

Comparison	Operators

• Comparison	operators	are	used	in	logical	statements	to	determine	
equality	or	difference	between	variables	or	values.	They	
return true or false.

• The equal	to	(==) operator	checks	whether	the	operands'	values	are	
equal.
var num =	10;	
//	num ==	8	will	return	false

• You	can	check	all	types	of	data;	comparison	operators	always	return	
true	or	false.

265

Comparison	Operators

• The	table	below	explains	the	comparison	operators.

• When	using	operators,	be	sure	that	the	arguments	are	of	the	same	data	type;	
numbers	should	be	compared	with	numbers,	strings	with	strings,	and	so	on.

266

Logical	or	Boolean	Operators

267

Logical	Operators

• Logical Operators,	also	known	as Boolean Operators,	evaluate	the	
expression	and	return true or false.
• The	table	below	explains	the	logical	operators	(AND, OR, NOT).

• You	can	check	all	types	of	data;	comparison	operators	always	return	true	or	
false.

268

Logical	Operators

• In	the	following	example,	we	have	
connected	two	Boolean	expressions	
with	the AND operator.
(4	>	2)	&&	(10	<	15)

• For	this	expression	to	be true,	both	
conditions	must	be true.
- The	first	condition	determines	
whether	4	is	greater	than	2,	which	
is true.
- The	second	condition	determines	
whether	10	is	less	than	15,	which	is	
also true.
• Based	on	these	results,	the	whole	
expression	is	found	to	be true.

• Conditional	(Ternary)	Operator
• Another	JavaScript	conditional	
operator	assigns	a	value	to	a variable,	
based	on	some	condition.
Syntax:
variable =	(condition)	?	value1:	value2	
For	example:
var isAdult =	(age	<	18)	?	"Too	young":	
"Old	enough";
• If	the variable age is	a	value	below	18,	
the	value	of	the variable isAdult will	
be	"Too	young".	Otherwise	the	value	
of isAdult will	be	"Old	enough".
• Logical	operators	allow	you	to	connect	
as	many	expressions	as	you	wish.

269

String	Operators

270

String	Operators

• The	most	useful	operator	for	
strings	is concatenation,	
represented	by	the	+	sign.
• Concatenation	can	be	used	to	
build	strings	by	joining	together	
multiple	strings,	or	by	joining	
strings	with	other	types:
var mystring1	=	"I	am	learning	";
var mystring2	=	"JavaScript	with	
SoloLearn.";
document.write(mystring1	+	
mystring2);

• The	above	example	declares	and	
initializes	two string variables,	
and	then	concatenates	them.

• Numbers	in	quotes	are	treated	
as	strings:	"42"	is	not	the	
number	42,	it	is	a string that	
includes	two	characters,	4	and	2.

271

The	if	Statement

272

The	if	Statement

• Very	often	when	you	write	code,	
you	want	to	perform	different	
actions	based	on	different	
conditions.
• You	can	do	this	by	
using conditional	statements in	
your	code.

• Use if to	specify	a	block	of	code	
that	will	be	executed	if	a	specified	
condition	is	true.
if	(condition)	{

statements
}

• The	statements	will	be	executed	
only	if	the	specified	condition	
is true.

• Example:

var myNum1	=	7;
var myNum2	=	10;
if	(myNum1	<	myNum2)	{
alert("JavaScript	is	easy	to	learn.");
}

273

The	if	Statement

• Result: • As	seen	in	the	picture	above,	the	
JavaScript alert()method is	used	
to	generate	a	popup	alert	box	
that	contains	the	information	
provided	in	parentheses.

274

The	if	Statement

• This	is	another	example	of	
a false conditional	statement.

var myNum1	=	7;
var myNum2	=	10;
if	(myNum1	>myNum2)	{

alert("JavaScript	is	easy	to	
learn.");

}

• As	the	condition	evaluates	to	
false,	the	alert	statement	is	
skipped	and	the	program	
continues	with	the	line	after	the	
if	statement's	closing	curly	
brace.

• Note	that if is	in	lowercase	
letters.	Uppercase	letters	(If	or	
IF)	will	generate	an	error.

275

The	if	else	Statement

276

The	else	Statement

• Use	the else statement	to	
specify	a	block	of	code	that	will	
execute	if	the	condition	is false.

if	(expression)	{
//	executed	if	condition	is	true

}
else	{
//	executed	if	condition	is	false

}

• You	can	skip	curly	braces	if	your	
code	under	the	condition	
contains	only	one	command.

277

The	else	Statement

• The	example	below	demonstrates	the	use	
of	an if...else statement.
var myNum1	=	7;
var myNum2	=	10;
if	(myNum1	>	myNum2)	{

alert("This	is	my	first	condition");
}
else	{

alert("This	is	my	second	condition");
}

• The	above	example	says:
- IfmyNum1 is	greater	
thanmyNum2, alert	"This	is	my	first	
condition";
- Else,	alert	"This	is	my	second	condition".

• The	browser	will	print	out	the	second	
condition,	as	7	is	not	greater	than	10.

• Result:

• There	is	also	another	way	to	do	this	check	
using	the	?	operator:	a	>	b	?	alert(a)	:	
alert(b).

278

The	if	else	if	else	Statement

279

else	if

• You	can	use	the else	if	statement to	specify	a	new	condition	if	the	first	
condition	is	false.

• Example:
var course	=	1;
if	(course	==	1)	{

document.write("<h1>HTML	Tutorial</h1>");
}	else	if	(course	==	2)	{

document.write("<h1>CSS	Tutorial</h1>");
}	else	{

document.write("<h1>JavaScript	Tutorial</h1>");
}

280

else	if

• The	above	code	says:
- if course	is	equal	to	1,	output	
"HTML	Tutorial";
- else,	if course	is	equal	to	2,	
output	"CSS	Tutorial";
- if	none	of	the	above	condition	
is	true,	then	output	"JavaScript	
Tutorial";

• course is	equal	to	1,	so	we	get	
the	following	result:

• The	final else statement	"ends"	
the	else	if	statement	and	should	
be	always	written	after	
the if and else	if statements.

281

else	if

• The	final else block	will	be	executed	
when none of	the	conditions	is	true.

• Let's	change	the	value	of	
the course variable in	our	previous	
example.
var course	=	3;
if	(course	==	1)	{

document.write("<h1>HTML	
Tutorial</h1>");

}	else	if	(course	==	2)	{
document.write("<h1>CSS	
Tutorial</h1>");

}	else	{
document.write("<h1>JavaScript	
Tutorial</h1>");

}

• Result:

• You	can	write	as	many else	if statements	
as	you	need.

282

The	For	Loop

283

Loops

• Loops	can	execute	a	block	of	code	a	number	of	times.	They	are	handy	
in	cases	in	which	you	want	to	run	the	same	code	repeatedly,	adding	a	
different	value	each	time.

• JavaScript	has	three	types	of	loops: for, while,	and do	while.

• The for loop	is	commonly	used	when	creating	a	loop.

284

Loops

• The	syntax:

for	(statement	1;	statement	2;	
statement	3)	{
code	block	to	be	executed
}

• As	you	can	see,	the classic	for	
loop has three components,	or	
statements.

• Statement	1 is	executed	before	
the	loop	(the	code	block)	starts.
• Statement	2 defines	the	
condition	for	running	the	loop	
(the	code	block).
• Statement	3 is	executed	each	
time	after	the	loop	(the	code	
block)	has	been	executed.
As	you	can	see,	the classic	for	
loop has three components,	or	
statements.

285

The	For	Loop

• The	example	below	creates	
a for loop	that	prints	numbers	1	
through	5.

for (i=1; i<=5; i++) {
document.write(i + "
");
}

• In	this	example, Statement	

1 sets	a variable before	the	loop	
starts	(var i =	1).

• Statement	2 defines	the	
condition	for	the	loop	to	run	(i
must	be	less	than	or	equal	to	5).

• Statement	3 increases	a	value	
(i++)	each	time	the	code	block	in	
the	loop	has	been	executed.

286

The	For	Loop

• Result:

• Statement	1 is	optional,	and	can	be	
omitted,	if	your	values	are	set	before	
the	loop	starts.
var i =	1;
for	(;	i<=5;	i++)	{

document.write(i +	"
");
}

• Also,	you	can	initiate	more	than	one	
value	in statement	1,	
using commas to	separate	them.

for	(i=1,	text="";	i<=5;	i++)	{
text	=	i;
document.write(i +	"
");

}

287

The	For	Loop

• If statement	2 returns	true,	the	
loop	will	start	over	again,	if	it	
returns	false,	the	loop	will	end.
Statement	2	is	also	optional.

• If	you	omit	statement	2,	you	must	
provide	a break inside	the	loop.	
Otherwise,	the	loop	will	never	end.

• You	can	have	multiple	nested	for	
loops.

• Statement	3 is	used	to	change	the	
initial variable.	It	can	do	anything,	
including	negative	increment	(i--),	
positive	increment	(i =	i +	15),	or	
anything	else.

• Statement	3	is	also	optional,	and	it	
can	be	omitted	if	you	increment	
your	values	inside	the	loop.
var i =	0;
for	(;	i <	10;)	{

document.write(i);
i++;

}

288

The	While	Loop

289

The	While	Loop

• The while loop	repeats	through	a	block	of	code,	as	long	as	a	specified	
condition	is true.

• Syntax:
while (condition)	{	

code	block
}

• The condition can	be	any	conditional	statement	that	returns	true	or	
false.

290

The	While	Loop

• Consider	the	following	example.
var i=0;
while	(i<=10)	{

document.write(i +	"
");
i++;

}

• The	loop	will	continue	to	run	as	
long	as	i is	less	than,	or	equal	to,	
10.	Each	time	the	loop	runs,	it	
will	increase	by	1.

• This	will	output	the	values	from	
0	to	10.

• Be	careful	writing	conditions.	If	a	
condition	is	always	true,	the	
loop	will	run	forever.

291

The	While	Loop

• If	you	forget	to	increase	the variable used	in	the	condition,	the	loop	
will	never	end.

• Make	sure	that	the	condition	in	a	while	loop	eventually	
becomes false.

292

Break	and	Continue

293

Break

• The break statement	"jumps	out"	
of	a	loop	and	continues	executing	
the	code	after	the	loop.

for	(i =	0;	i <=	10;	i++)	{
if	(i ==	5)	{

break;	
}
document.write(i +	"
");

}

• Once	i reaches	5,	it	will	break	out	
of	the	loop.

• You	can	use	the	return	keyword	to	
return	some	value	immediately	
from	the	loop	inside	of	a	function.	
This	will	also	break	the	loop.

294

Continue

• The continue statement	breaks	
only	one	iteration	in	the	loop,	
and	continues	with	the	next	
iteration.

for	(i =	0;	i <=	10;	i++)	{
if	(i ==	5)	{

continue;	

}
document.write(i +	"
");

}

• Result:

• The	value	5	is	not	printed,	
because continue skips	that	
iteration	of	the	loop.

295

