

Transistor Currents

• The diagram show that the emitter current (*I*E) is the sum of the collector current (*I*C) and the base current (*I*B), expressed as follows:

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$

Transistor Parameters/Relations

• When a transistor is connected to dc bias voltages, *V*BB forward-biases the base-emitter junction, and *V*CC reversebiases the base-collector junction.

DC Beta (β_{DC}) and DC Alpha (α_{DC})

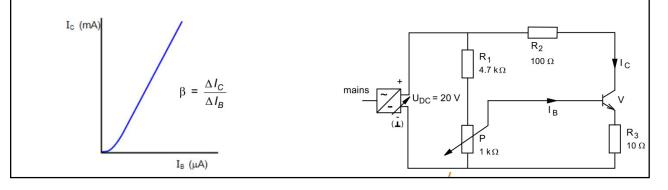
The dc current **gain** of a transistor is the ratio of the dc collector current $(I_{\rm C})$ to the dc base current $(I_{\rm B})$ and is designated dc **beta** $(\beta_{\rm DC})$.

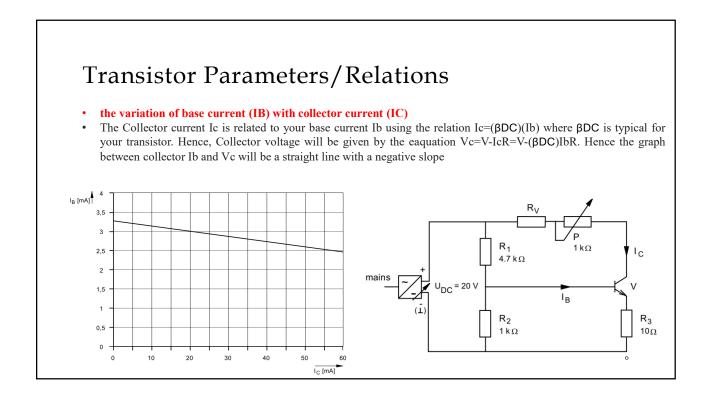
$$\beta_{\rm DC} = \frac{I_{\rm C}}{I_{\rm B}}$$

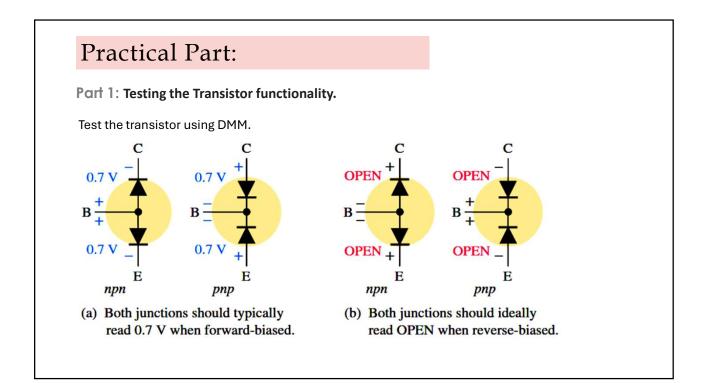
Typical values of β_{DC} range from less than 20 to 200 or higher.

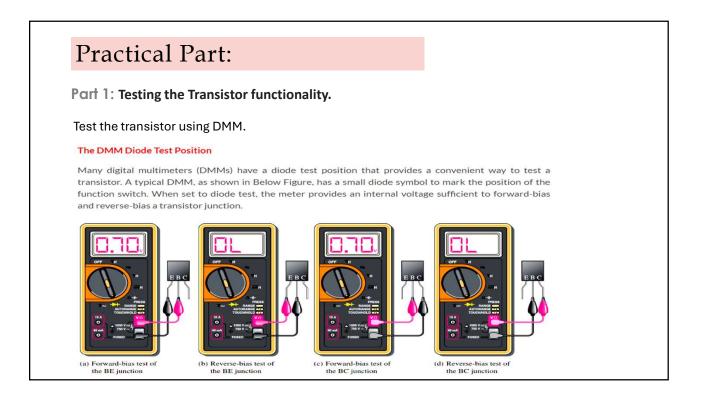
The ratio of the dc collector current $(I_{\rm C})$ to the dc emitter current $(I_{\rm E})$ is the dc **alpha** $(\alpha_{\rm DC})$. The alpha is a less-used parameter than beta in transistor circuits.

$$\alpha_{\rm DC} = \frac{I_{\rm C}}{I_{\rm E}}$$


 $R_{C} = I_{C}$ $V_{BB} = I_{E}$ $V_{BB} = I_{E}$ I_{E} $V_{CC} = I_{E}$ I_{E} I_{E} I


Typically, values of $\alpha_{\rm DC}$ range from 0.95 to 0.99 or greater, but $\alpha_{\rm DC}$ is always less than 1. The reason is that $I_{\rm C}$ is always slightly less than $I_{\rm E}$ by the amount of $I_{\rm B}$.


Transistor Parameters/Relations


• the variation of collector current (IC) with base current (IB)

• The Figure shows how the collector current varies when there is a change in the base current. You can see that a change in base current (ΔI_B) of a few microamps will produce a collector current change (ΔI_C) of a few milliamps. This shows the amplifying action of the transistor and also that this amplification is current-controlled rather than voltage-controlled. The ratio of the change in collector current to the change in base current is called the current gain of the transistor, and is written as β_{DC} .

Practical Part: Part 2: Testing the Layers and the Rectifying Behavior of Bipolar Transistors. Examine the effect of the p-n junctions of an n-p-n transistor on the current flowing through it, in relation to the applied voltage and its polarity Note: diagram 2 diagram 1 $I_F (I_R)$ Always use the correct вО O A measuring method: A O A O R_V 4.7 kΩ voltage error or current в C error circuit $U_F (U_R)$ U_{DC} = diagram 3 diagram 4 0 ... 30 V A O-P 1kΩ V₁ BC BO Ов base / emittercollector / base line line V₁ ≙ hps Type 9118.2 (NPN),

Part 2: Te	sting th	ne Layers	and the	e Rectify	ing Beh	avior of	Bipolar	Transisto	ors.		
1. Set up t multimete current IF dependen voltage UF	er, set th and ent ice of th	e voltage er the va	es UF cor lues in Ta	nsecutive able 4.1.2	ely accor	ding to T	able 4.1	2.1. Mea	sure ead	ch corres aph show	ponding
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.65	0.7	0.75*	0.76*
U _F [V]				-							

Practical Part: Part 2: Testing the Layers and the Rectifying Behavior of Bipolar Transistors. 2. Set up the circuit as shown in Fig. 4.1.2.1 (diagram 2). Set the voltages UF consecutively according to Table 4.1.2.3. Measure each corresponding current IF and enter the values in Table 4.1.2.3. On the diagram (Fig. 4.1.2.3), plot a graph showing the dependence of the current IF on the voltage UF. diagram 2 B O-A O U_F [V] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.65 0.7 0.75 0,8* I_F [mA] Tab. 4.1.2.3 Diagram 2 (collector/base line)

Prac	Practical Part:											
Part 2:	Part 2: Testing the Layers and the Rectifying Behavior of Bipolar Transistors.											
voltage o 4. Set up to Table	directly on the circuit 4.1.2.2. Mea	ne power su as shown in asure each e	ents, remov pply unit. Re Fig. 4.1.2.1 correspondi ph showing	esistor RV s (diagram 3) ng current l	hould remai . Set the vol F and enter	n connecte tages UR co the values in	d for safety onsecutively n Table 4.1.2	reasons. / according 2.2. On the				
U _R [V]	0	2	4	6	8	8.1	8.2	8.3				

Practical Part: Part 2: Testing the Layers and the Rectifying Behavior of Bipolar Transistors. 4. Set up the circuit as shown in Fig. 4.1.2.1 (diagram 4). Set the voltages UR consecutively according to Table 4.1.2.4. Measure each corresponding current IR (multimeter with 0.1 - A measuring range required) and enter the values in Table 4.1.2.4. On the diagram (Fig. 4.1.2.3), plot a graph showing the dependence of the current IR on the voltage UR. diagram 4 A O collector / base line U_R [V] 0 5 10 15 20 25 30 I_R [nA] Tab. 4.1.2.4 Diagram 4 (collector/base line)

Prac	Practical Part:								
Part 2: Te	esting the Layers and the	Rectifying Behavior of Bi	polar Transistors.						
		Polarity	N-P-N Type						
	Base/Emitter Line	base + / emitter - (polarity 1)							
	(conducting or blocked)	base - / emitter + (polarity 3)							
	Collector/Base Line	collector - / base + (polarity 2)							
	(conducting or blocked)	collector + / base - (polarity 4)							

ŀ	Practical Part:												
_													
Po	Part 3: Current Distribution in the Transistor and Control Effect of the Base Current.												
Examine the influence of the collector current on the base current statically. Carry out the experiment with an n-p-n													
tra	transistor.												
1.	1. Apply a DC voltage of UDC = 20 V to the circuit shown in Fig. 4.2.2.1. Measure the base current IB with interrupted												
2.	collector line (potentiometer removed) and enter its value in Table 4.2.2.1. 2. Replace the potentiometer and set the collector current values listed in Table 4.2.2.1 Enter the corresponding base												
	•	nt values							R _V				
								1					
R_V [Ω]	00	1000	680	470	470	330	220		R ₁ 1kΩ I _C 4.7 kΩ				
I _c [mA]	0	20	25	30	40	50	60	mains ~/					
1.7.41													
I _B [mA]								(1)	² R ₂ R ₃ 1 kΩ 10Ω				
Tab. 4.2.2.1									V ≙ hps Type 9118.2				

Practical Part:

Part 3: Current Distribution in the Transistor and Control Effect of the Base Current.

Examine the influence of the base current on the collector current statically. Carry out the experiment with an n-p-n transistor.

1. Set up the circuit as shown in Fig. 4.2.2.3. Using the potentiometer, vary the base current according to the values given in Table 4.2.2.2. Measure the corresponding collector currents IC and enter the values in Table 4.2.2.2.

_

												R_2
_B [mA]	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	+ R1 100 Ω I C
.Rt1	ů.		<u>.</u>						<u></u>			
l _c [mA]												
יייין זי												P 1 kΩ P 1 kΩ R3 V≙ hps Type 9118.2