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71.	 Use the inequalities in Exercise 70 to estimate ƒ(0.1) if ƒ′(x) =  
1>(1 + x4 cos x) for 0 … x … 0.1 and ƒ(0) = 1.

72.	 Use the inequalities in Exercise 70 to estimate ƒ(0.1) if ƒ′(x) =  
1>(1 - x4) for 0 … x … 0.1 and ƒ(0) = 2.

73.	 Let ƒ be differentiable at every value of x and suppose that 
ƒ(1) = 1, that ƒ′ 6 0 on (-q, 1), and that ƒ′ 7 0 on (1, q).

	a.	 Show that ƒ(x) Ú 1 for all x.

	b.	 Must ƒ′(1) = 0? Explain.

74.	 Let ƒ(x) = px2 + qx + r be a quadratic function defined on a 
closed interval 3a, b4 . Show that there is exactly one point c in (a, b) 
at which ƒ satisfies the conclusion of the Mean Value Theorem.

T

T

75.	 Use the same-derivative argument, as was done to prove the 
Product and Power Rules for logarithms, to prove the Quotient 
Rule property.

76.	 Use the same-derivative argument to prove the identities

	a.	 tan-1 x + cot-1 x = p

2
    b.  sec-1 x + csc-1 x = p

2

77.	 Starting with the equation ex1ex2 = ex1 + x2, derived in the text, 
show that e-x = 1>ex for any real number x. Then show that 
ex1>ex2 = ex1 - x2 for any numbers x1 and x2.

78.	 Show that (ex1)x2 = ex1 x2 = (ex2)x1 for any numbers x1 and x2.

4.3 M onotonic Functions and the First Derivative Test

In sketching the graph of a differentiable function, it is useful to know where it increases 
(rises from left to right) and where it decreases (falls from left to right) over an interval. This 
section gives a test to determine where it increases and where it decreases. We also show how 
to test the critical points of a function to identify whether local extreme values are present.

Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive 
derivatives are increasing functions and functions with negative derivatives are decreasing 
functions. A function that is increasing or decreasing on an interval is said to be mono-
tonic on the interval.

Corollary 3  Suppose that ƒ is continuous on 3a, b4  and differentiable on 
(a, b).

If ƒ′(x) 7 0 at each point x∊(a, b), then ƒ is increasing on 3a, b4 .
If ƒ′(x) 6 0 at each point x∊(a, b), then ƒ is decreasing on 3a, b4 .

Proof    Let x1 and x2 be any two points in 3a, b4  with x1 6 x2. The Mean Value Theo-
rem applied to ƒ on 3x1, x24  says that

ƒ(x2) - ƒ(x1) = ƒ′(c)(x2 - x1)

for some c between x1 and x2. The sign of the right-hand side of this equation is the same 
as the sign of ƒ ′(c) because x2 - x1 is positive. Therefore, ƒ(x2) 7 ƒ(x1) if ƒ′ is positive 
on (a, b) and ƒ(x2) 6 ƒ(x1) if ƒ′ is negative on (a, b).�

Corollary 3 tells us that ƒ(x) = 2x is increasing on the interval 30, b4  for any 
b 7 0 because ƒ′(x) = 1>2x is positive on (0, b). The derivative does not exist at x = 0, 
but Corollary 3 still applies. The corollary is valid for infinite as well as finite intervals, so 
ƒ(x) = 2x is increasing on 30, q).

To find the intervals where a function ƒ is increasing or decreasing, we first find all of 
the critical points of ƒ. If a 6 b are two critical points for ƒ, and if the derivative ƒ′ is 
continuous but never zero on the interval (a, b), then by the Intermediate Value Theorem 
applied to ƒ′, the derivative must be everywhere positive on (a, b), or everywhere negative 
there. One way we can determine the sign of ƒ′ on (a, b) is simply by evaluating the 
derivative at a single point c in (a, b). If ƒ′(c) 7 0, then ƒ′(x) 7 0 for all x in (a, b) so ƒ 
is increasing on 3a, b4  by Corollary 3; if ƒ′(c) 6 0, then ƒ is decreasing on 3a, b4 . The 
next example illustrates how we use this procedure.



We used “strict” less-than inequalities to identify the intervals in the summary table 
for Example 1, since open intervals were specified. Corollary 3 says that we could use …
inequalities as well. That is, the function ƒ in the example is increasing on -q 6 x … -2,
decreasing on -2 … x … 2, and increasing on 2 … x 6 q. We do not talk about whether 
a function is increasing or decreasing at a single point.

First Derivative Test for Local Extrema

In Figure 4.21, at the points where ƒ has a minimum value, ƒ′ 6 0 immediately to the left 
and ƒ′ 7 0 immediately to the right. (If the point is an endpoint, there is only one side to 
consider.) Thus, the function is decreasing on the left of the minimum value and it is 
increasing on its right. Similarly, at the points where ƒ has a maximum value, ƒ′ 7 0
immediately to the left and ƒ′ 6 0 immediately to the right. Thus, the function is increas-
ing on the left of the maximum value and decreasing on its right. In summary, at a local 
extreme point, the sign of ƒ′(x) changes.

EXAMPLE 1  Find the critical points of ƒ(x) = x3 - 12x - 5 and identify the open 
intervals on which ƒ is increasing and on which ƒ is decreasing.

Solution The function ƒ is everywhere continuous and differentiable. The first derivative

ƒ′(x) = 3x2 - 12 = 3(x2 - 4)

= 3(x + 2)(x - 2)

is zero at x = -2 and x = 2. These critical points subdivide the domain of ƒ to create non-
overlapping open intervals (-q, -2), (-2, 2), and (2, q) on which ƒ′ is either positive or 
negative. We determine the sign of ƒ′ by evaluating ƒ′ at a convenient point in each subin-
terval. The behavior of ƒ is determined by then applying Corollary 3 to each subinterval. 
The results are summarized in the following table, and the graph of ƒ is given in Figure 4.20.
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These observations lead to a test for the presence and nature of local extreme values 
of differentiable functions.
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FIGURE 4.20 The function ƒ(x) =
x3 - 12x - 5 is monotonic on three 
separate intervals (Example 1).

Interval  -q 6 x 6 -2 -2 6 x 6 2 2 6 x 6 q

ƒ′ evaluated ƒ′(-3) = 15 ƒ′(0) = -12 ƒ′(3) = 15

Sign of ƒ′ + - +

Behavior of ƒ x
−3 −2 −1 0 1 2 3

decreasing increasingincreasing

x

y= f(x)

a bc1 c2 c5c4c3

Absolute min

Absolute max
f ′  undefined

Local min

Local max
f ′ = 0 No extremum

f ′ = 0

No extremum
f ′ = 0

Local min
f ′ = 0

f ′ < 0
f ′ > 0

f ′ > 0

f ′ > 0
f ′ < 0

f ′ < 0

FIGURE 4.21 The critical points of a function locate where it is increasing and where it is decreasing. The 
first derivative changes sign at a critical point where a local extremum occurs.
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The test for local extrema at endpoints is similar, but there is only one side to consider in 
determining whether ƒ is increasing or decreasing, based on the sign of ƒ′.

Proof of the First Derivative Test    Part (1). Since the sign of ƒ′ changes from nega-
tive to positive at c, there are numbers a and b such that a 6 c 6 b, ƒ′ 6 0 on (a, c), and 
ƒ′ 7 0 on (c, b). If x∊(a, c), then ƒ(c) 6 ƒ(x) because ƒ′ 6 0 implies that ƒ is decreas-
ing on 3a, c4 . If x∊(c, b), then ƒ(c) 6 ƒ(x) because ƒ′ 7 0 implies that ƒ is increasing 
on 3c, b4 . Therefore, ƒ(x) Ú ƒ(c) for every x∊(a, b). By definition, ƒ has a local mini-
mum at c.

Parts (2) and (3) are proved similarly.�

Example  2    Find the critical points of

ƒ(x) = x1>3(x - 4) = x4>3 - 4x1>3.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 
local and absolute extreme values.

Solution  The function ƒ is continuous at all x since it is the product of two continuous 
functions, x1>3 and (x - 4). The first derivative

 ƒ′(x) = d
dx

  (x4>3 - 4x1>3) = 4
3 x1>3 - 4

3 x-2>3

 = 4
3 x-2>3(x - 1) =

4(x - 1)

3x2>3

is zero at x = 1 and undefined at x = 0. There are no endpoints in the domain, so the 
critical points x = 0 and x = 1 are the only places where ƒ might have an extreme value.

The critical points partition the x-axis into open intervals on which ƒ′ is either posi-
tive or negative. The sign pattern of ƒ′ reveals the behavior of ƒ between and at the critical 
points, as summarized in the following table.

First Derivative Test for Local Extrema 

Suppose that c is a critical point of a continuous function ƒ, and that ƒ is differ-
entiable at every point in some interval containing c except possibly at c itself. 
Moving across this interval from left to right,

1.  if ƒ′ changes from negative to positive at c, then ƒ has a local minimum at c;

2.  if ƒ′ changes from positive to negative at c, then ƒ has a local maximum at c;

3.  �if ƒ′ does not change sign at c (that is, ƒ′ is positive on both sides of c or 
negative on both sides), then ƒ has no local extremum at c.

Corollary 3 to the Mean Value Theorem implies that ƒ decreases on (-q, 0), 
decreases on (0, 1), and increases on (1, q). The First Derivative Test for Local Extrema 
tells us that ƒ does not have an extreme value at x = 0 (ƒ′ does not change sign) and that 
ƒ has a local minimum at x = 1 (ƒ′ changes from negative to positive).

The value of the local minimum is ƒ(1) = 11>3(1 - 4) = -3. This is also an absolute 
minimum since ƒ is decreasing on (-q, 1) and increasing on (1, q). Figure 4.22 shows 
this value in relation to the function’s graph.

Note that lim
 

xS0 ƒ′(x) = -q, so the graph of ƒ has a vertical tangent at the origin. 
�
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Figure 4.22  The function ƒ(x) =  
x1>3(x - 4) decreases when x 6 1 and 
increases when x 7 1 (Example 2).

Interval	 x 6 0	 0 6 x 6 1	 x 7 1

Sign of ƒ′	 - 	 - 	 +

Behavior of ƒ	 x
−1 0 1 2

decreasing increasingdecreasing
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Example  3    Find the critical points of

ƒ(x) = (x2 - 3)ex.

Identify the open intervals on which ƒ is increasing and decreasing. Find the function’s 
local and absolute extreme values.

Solution  The function ƒ is continuous and differentiable for all real numbers, so the 
critical points occur only at the zeros of ƒ′.

Using the Derivative Product Rule, we find the derivative

 ƒ′(x) = (x2 - 3) # d
dx

 ex + d
dx

  (x2 - 3) # ex

 = (x2 - 3) # ex + (2x) # ex

 = (x2 + 2x - 3)ex.

Since ex is never zero, the first derivative is zero if and only if

 x2 + 2x - 3 = 0

 (x + 3)(x - 1) = 0.

The zeros x = -3 and x = 1 partition the x-axis into open intervals as follows.

Interval	 x 6 -3	 -3 6 x 6 1	 1 6 x

Sign of ƒ′	 + 	 - 	 +

Behavior of ƒ x
−3−4 −2 −1 0 1 2 3

decreasing increasingincreasing

We can see from the table that there is a local maximum (about 0.299) at x = -3 and 
a local minimum (about -5.437) at x = 1. The local minimum value is also an abso-
lute minimum because ƒ(x) 7 0 for 0 x 0 7 23. There is no absolute maximum. The 
function increases on (-q, -3) and (1, q) and decreases on (-3, 1). Figure 4.23 
shows the graph.�

Analyzing Functions from Derivatives
Answer the following questions about the functions whose derivatives 
are given in Exercises 1–14:

	 	 a.  What are the critical points of ƒ?

	 	 b.  On what open intervals is ƒ increasing or decreasing?

	 	 c.  �At what points, if any, does ƒ assume local maximum and mini-
mum values?

	 1.	 ƒ′(x) = x(x - 1)	 2.	 ƒ′(x) = (x - 1)(x + 2)

	 3.	 ƒ′(x) = (x - 1)2(x + 2)	 4.	 ƒ′(x) = (x - 1)2(x + 2)2

	 5.	 ƒ′(x) = (x - 1)e-x

	 6.	 ƒ′(x) = (x - 7)(x + 1)(x + 5)

	 7.	 ƒ′(x) =
x2(x - 1)

x + 2
, x ≠ -2

	 8.	 ƒ′(x) =
(x - 2)(x + 4)
(x + 1)(x - 3)

 , x ≠ -1, 3

	 9.	 ƒ′(x) = 1 - 4
x2 , x ≠ 0	 10.	 ƒ′(x) = 3 - 62x

 , x ≠ 0

	11.	 ƒ′(x) = x-1>3(x + 2)	 12.	 ƒ′(x) = x-1>2(x - 3)

13.	 ƒ′(x) = (sin x - 1)(2 cos x + 1), 0 … x … 2p

14.	 ƒ′(x) = (sin x + cos x)(sin x - cos x), 0 … x … 2p

Identifying Extrema
In Exercises 15–44:

	 	 a. � Find the open intervals on which the function is increasing and 
decreasing.

	 	 b. � Identify the function’s local and absolute extreme values, if 
any, saying where they occur.

15.	 		 16.	

y = f (x)
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Exercises  4.3
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Figure 4.23  The graph of 
ƒ(x) = (x2 - 3)ex (Example 3).
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57.	 ƒ(x) = sin 2x, 0 … x … p

58.	 ƒ(x) = sin x - cos x, 0 … x … 2p

59.	 ƒ(x) = 23 cos x + sin x, 0 … x … 2p

60.	 ƒ(x) = -2x + tan x, 
-p

2
6 x 6 p

2

61.	 ƒ(x) = x
2

- 2 sin 
x
2

, 0 … x … 2p

62.	 ƒ(x) = -2 cos x - cos2 x, -p … x … p

63.	 ƒ(x) = csc2 x - 2 cot x, 0 6 x 6 p

64.	 ƒ(x) = sec2 x - 2 tan x, 
-p

2
6 x 6 p

2

Theory and Examples
Show that the functions in Exercises 65 and 66 have local extreme 
values at the given values of u, and say which kind of local extreme 
the function has.

65.	 h(u) = 3 cos 
u

2
, 0 … u … 2p, at u = 0 and u = 2p

66.	 h(u) = 5 sin 
u

2
, 0 … u … p, at u = 0 and u = p

67.	 Sketch the graph of a differentiable function y = ƒ(x) through 
the point (1, 1) if ƒ′(1) = 0 and

	 a.	ƒ′(x) 7 0 for x 6 1 and ƒ′(x) 6 0 for x 7 1;

	b.	 ƒ′(x) 6 0 for x 6 1 and ƒ′(x) 7 0 for x 7 1;

	c.	 ƒ′(x) 7 0 for x ≠ 1;

	d.	 ƒ′(x) 6 0 for x ≠ 1.

68.	 Sketch the graph of a differentiable function y = ƒ(x) that has

	a.	 a local minimum at (1, 1) and a local maximum at (3, 3);

	b.	 a local maximum at (1, 1) and a local minimum at (3, 3);

	c.	 local maxima at (1, 1) and (3, 3);

	d.	 local minima at (1, 1) and (3, 3).

69.	 Sketch the graph of a continuous function y = g(x) such that

	a.	 g(2) = 2, 0 6 g′ 6 1 for x 6 2, g′(x) S 1- as x S 2-, 
-1 6 g′ 6 0 for x 7 2, and g′(x) S -1+ as x S 2+;

	b.	 g(2) = 2, g′ 6 0 for x 6 2, g′(x) S -q as x S 2-, 
g′ 7 0 for x 7 2, and g′(x) S q as x S 2+.

70.	 Sketch the graph of a continuous function y = h(x) such that

	a.	 h(0) = 0, -2 … h(x) … 2 for all x, h′(x) S q as x S 0-, 
and h′(x) S q as x S 0+;

	b.	 h(0) = 0, -2 … h(x) … 0 for all x, h′(x) S q as x S 0-, 
and h′(x) S -q as x S 0+.

71.	 Discuss the extreme-value behavior of the function ƒ(x) =  
x sin (1>x), x ≠ 0. How many critical points does this function 
have? Where are they located on the x-axis? Does ƒ have an abso-
lute minimum? An absolute maximum? (See Exercise 49 in  
Section 2.3.)

72.	 Find the open intervals on which the function ƒ(x) = ax2 +  
bx + c, a ≠ 0, is increasing and decreasing. Describe the  
reasoning behind your answer.

73.	 Determine the values of constants a and b so that ƒ(x) =  
ax2 + bx has an absolute maximum at the point (1, 2).

74.	 Determine the values of constants a, b, c, and d so that 
ƒ(x) = ax3 + bx2 + cx + d has a local maximum at the point 
(0, 0) and a local minimum at the point (1, -1).

17.	 		 18.	

19.	 g(t) = - t2 - 3t + 3	 20.	 g(t) = -3t2 + 9t + 5

21.	 h(x) = -x3 + 2x2	 22.	 h(x) = 2x3 - 18x

23.	 ƒ(u) = 3u2 - 4u3	 24.	 ƒ(u) = 6u - u3

	25.	 ƒ(r) = 3r3 + 16r	 26.	 h(r) = (r + 7)3

	27.	 ƒ(x) = x4 - 8x2 + 16	 28.	 g(x) = x4 - 4x3 + 4x2

	29.	 H(t) = 3
2

 t4 - t6	 30.	 K(t) = 15t3 - t5

	31.	 ƒ(x) = x - 62x - 1	 32.	 g(x) = 42x - x2 + 3

	33.	 g(x) = x28 - x2	 34.	 g(x) = x225 - x

	35.	 ƒ(x) = x2 - 3
x - 2

, x ≠ 2	 36.	 ƒ(x) = x3

3x2 + 1
	37.	 ƒ(x) = x1>3(x + 8)	 38.	 g(x) = x2>3(x + 5)

	39.	 h(x) = x1>3(x2 - 4)	 40.	 k(x) = x2>3(x2 - 4)

	41.	 ƒ(x) = e2x + e-x	 42.	 ƒ(x) = e2x

	43.	 ƒ(x) = x ln x	 44.	 ƒ(x) = x2 ln x

In Exercises 45–56:

	 	 a. � Identify the function’s local extreme values in the given 
domain, and say where they occur.

	 	 b.  Which of the extreme values, if any, are absolute?

	 	 c. � Support your findings with a graphing calculator or computer 
grapher.

45.	 ƒ(x) = 2x - x2, -q 6 x … 2

46.	 ƒ(x) = (x + 1)2, -q 6 x … 0

47.	 g(x) = x2 - 4x + 4, 1 … x 6 q
48.	 g(x) = -x2 - 6x - 9, -4 … x 6 q
49.	 ƒ(t) = 12t - t3, -3 … t 6 q
50.	 ƒ(t) = t3 - 3t2, -q 6 t … 3

51.	 h(x) = x3

3
- 2x2 + 4x, 0 … x 6 q

52.	 k(x) = x3 + 3x2 + 3x + 1, -q 6 x … 0

53.	 ƒ(x) = 225 - x2, -5 … x … 5

54.	 ƒ(x) = 2x2 - 2x - 3, 3 … x 6 q

55.	 g(x) = x - 2
x2 - 1

, 0 … x 6 1

56.	 g(x) = x2

4 - x2 , -2 6 x … 1

In Exercises 57–64:

	 	 a. � Find the local extrema of each function on the given interval, 
and say where they occur.

	 	 b. � Graph the function and its derivative together. Comment on the 
behavior of ƒ in relation to the signs and values of ƒ′.
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75.	 Locate and identify the absolute extreme values of

	a.	 ln (cos x) on 3-p>4, p>34 ,
	b.	 cos (ln x) on 31>2, 24 .

76.	  a.	 �Prove that ƒ(x) = x - ln x is increasing for x 7 1.

	b.	 Using part (a), show that ln x 6 x if x 7 1.

77.	 Find the absolute maximum and minimum values of ƒ(x) =  
ex - 2x on 30, 14 .

78.	 Where does the periodic function ƒ(x) = 2esin (x>2) take on its 
extreme values and what are these values?

x

y

0

y = 2esin (x�2)

79.	 Find the absolute maximum value of ƒ(x) = x2 ln (1>x) and say 
where it is assumed.

80.	 a.	 Prove that ex Ú 1 + x if x Ú 0.

	b.	 Use the result in part (a) to show that

ex Ú 1 + x + 1
2

 x2.

81.	 Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x1 and x2 in I, x2 ≠ x1 implies 
ƒ(x2) ≠ ƒ(x1).

Use the results of Exercise 81 to show that the functions in Exercises 
82–86 have inverses over their domains. Find a formula for dƒ -1>dx 
using Theorem 3, Section 3.8.

82.	 ƒ(x) = (1>3)x + (5>6)	 83.	 ƒ(x) = 27x3

84.	 ƒ(x) = 1 - 8x3	 85.	 ƒ(x) = (1 - x)3

86.	 ƒ(x) = x5>3

Definition  The graph of a differentiable function y = ƒ(x) is

(a)		 concave up on an open interval I if ƒ′ is increasing on I;

(b)	 concave down on an open interval I if ƒ′ is decreasing on I.

If y = ƒ(x) has a second derivative, we can apply Corollary 3 of the Mean Value Theorem 
to the first derivative function. We conclude that ƒ′ increases if ƒ″ 7 0 on I, and decreases 
if ƒ″ 6 0.

4.4  Concavity and Curve Sketching

We have seen how the first derivative tells us where a function is increasing, where it is 
decreasing, and whether a local maximum or local minimum occurs at a critical point. In 
this section we see that the second derivative gives us information about how the graph of 
a differentiable function bends or turns. With this knowledge about the first and second 
derivatives, coupled with our previous understanding of symmetry and asymptotic behav-
ior studied in Sections 1.1 and 2.6, we can now draw an accurate graph of a function. By 
organizing all of these ideas into a coherent procedure, we give a method for sketching 
graphs and revealing visually the key features of functions. Identifying and knowing the 
locations of these features is of major importance in mathematics and its applications to 
science and engineering, especially in the graphical analysis and interpretation of data.

Concavity

As you can see in Figure 4.24, the curve y = x3 rises as x increases, but the portions 
defined on the intervals (-q, 0) and (0, q) turn in different ways. As we approach the 
origin from the left along the curve, the curve turns to our right and falls below its tan-
gents. The slopes of the tangents are decreasing on the interval (-q, 0). As we move 
away from the origin along the curve to the right, the curve turns to our left and rises above 
its tangents. The slopes of the tangents are increasing on the interval (0, q). This turning 
or bending behavior defines the concavity of the curve.
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Figure 4.24  The graph of ƒ(x) = x3 
is concave down on (-q, 0) and concave 
up on (0, q) (Example 1a).
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