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4.5 indeterminate Forms and L’hôpital’s rule

John (Johann) Bernoulli discovered a rule using derivatives to calculate limits of frac-
tions whose numerators and denominators both approach zero or +q. The rule is known 
today as l’Hôpital’s Rule, after Guillaume de l’Hôpital. He was a French nobleman who 
wrote the first introductory differential calculus text, where the rule first appeared in 
print. Limits involving transcendental functions often require some use of the rule for 
their calculation.

indeterminate Form 0 ,0
If we want to know how the function

F(x) = x - sin x
x3

behaves near x = 0 (where it is undefined), we can examine the limit of F(x) as x S 0. 
We cannot apply the Quotient Rule for limits (Theorem 1 of Chapter 2) because the limit 
of the denominator is 0. Moreover, in this case, both the numerator and denominator 
approach 0, and 0>0 is undefined. Such limits may or may not exist in general, but the 
limit does exist for the function F(x) under discussion by applying l’Hôpital’s Rule, as we 
will see in Example 1d.

 120. Suppose that the second derivative of the function y = ƒ(x) is

y″ = x2(x - 2)3(x + 3).

  For what x-values does the graph of ƒ have an inflection point?

 121. Find the values of constants a, b, and c so that the graph of 
y = ax3 + bx2 + cx has a local maximum at x = 3, local mini-
mum at x = -1, and inflection point at (1, 11).

 122. Find the values of constants a, b, and c so that the graph of 
y = (x2 + a)>(bx + c) has a local minimum at x = 3 and a 
local maximum at (-1, -2).

COmPuter exPLOrAtiOns
In Exercises 123–126, find the inflection points (if any) on the graph of 
the function and the coordinates of the points on the graph where the 
function has a local maximum or local minimum value. Then graph the 
function in a region large enough to show all these points simultane-
ously. Add to your picture the graphs of the function’s first and second 
derivatives. How are the values at which these graphs intersect the 
x-axis related to the graph of the function? In what other ways are the 
graphs of the derivatives related to the graph of the function?

 123. y = x5 - 5x4 - 240 124. y = x3 - 12x2

 125. y = 4
5

 x5 + 16x2 - 25

 126. y = x4

4
- x3

3
- 4x2 + 12x + 20

 127. Graph ƒ(x) = 2x4 - 4x2 + 1 and its first two derivatives 
together. Comment on the behavior of ƒ in relation to the signs 
and values of ƒ′ and ƒ″.

 128. Graph ƒ(x) = x cos x and its second derivative together for 
0 … x … 2p. Comment on the behavior of the graph of ƒ in 
relation to the signs and values of ƒ″.

 112. Suppose the derivative of the function y = ƒ(x) is

y′ = (x - 1)2(x - 2)(x - 4).

  At what points, if any, does the graph of ƒ have a local mini-
mum, local maximum, or point of inflection?

 113. For x 7 0, sketch a curve y = ƒ(x) that has ƒ(1) = 0 and 
ƒ′(x) = 1>x. Can anything be said about the concavity of such a 
curve? Give reasons for your answer.

 114. Can anything be said about the graph of a function y = ƒ(x) that 
has a continuous second derivative that is never zero? Give rea-
sons for your answer.

 115. If b, c, and d are constants, for what value of b will the curve 
y = x3 + bx2 + cx + d have a point of inflection at x = 1? 
Give reasons for your answer.

 116. Parabolas

 a. Find the coordinates of the vertex of the parabola 
y = ax2 + bx + c, a ≠ 0.

 b. When is the parabola concave up? Concave down? Give rea-
sons for your answers.

 117. Quadratic curves What can you say about the inflection 
points of a quadratic curve y = ax2 + bx + c, a ≠ 0? Give 
reasons for your answer.

 118. Cubic curves What can you say about the inflection points of 
a cubic curve y = ax3 + bx2 + cx + d, a ≠ 0? Give reasons 
for your answer.

 119. Suppose that the second derivative of the function y = ƒ(x) is

y″ = (x + 1)(x - 2).

  For what x-values does the graph of ƒ have an inflection point?
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If the continuous functions ƒ(x) and g (x) are both zero at x = a, then

lim
xSa

  
ƒ(x)
g(x)

cannot be found by substituting x = a. The substitution produces 0>0, a meaningless 
expression, which we cannot evaluate. We use 0>0 as a notation for an expression known 
as an indeterminate form. Other meaningless expressions often occur, such as q>q, 
q # 0, q - q, 00, and 1q, which cannot be evaluated in a consistent way; these are 
called indeterminate forms as well. Sometimes, but not always, limits that lead to indeter-
minate forms may be found by cancelation, rearrangement of terms, or other algebraic 
manipulations. This was our experience in Chapter 2. It took considerable analysis in Sec-
tion 2.4 to find limxS0 (sin x)>x. But we have had success with the limit

ƒ′(a) = lim
xSa

 
ƒ(x) - ƒ(a)

x - a  ,

from which we calculate derivatives and which produces the indeterminant form 0>0 
when we attempt to substitute x = a. L’Hôpital’s Rule enables us to draw on our success 
with derivatives to evaluate limits that otherwise lead to indeterminate forms.

theOrem 6—l’Hôpital’s Rule Suppose that ƒ(a) = g(a) = 0, that ƒ and 
g are differentiable on an open interval I containing a, and that g′(x) ≠ 0 on 
I if x ≠ a. Then

lim
xSa

   
ƒ(x)
g(x)

= lim
xSa

   
ƒ′(x)
g′(x)

,

assuming that the limit on the right side of this equation exists.

We give a proof of Theorem 6 at the end of this section.

ExamplE 1  The following limits involve 0>0 indeterminate forms, so we apply 
l’Hôpital’s Rule. In some cases, it must be applied repeatedly.

(a) lim
xS0

 
3x - sin x

x = lim
xS0

 
3 - cos x

1
= 3 - cos x

1
2
x = 0

= 2

(b) lim
xS0

 
21 + x - 1

x = lim
xS0

 

1

221 + x
1

= 1
2

(c) lim
xS0

 
21 + x - 1 - x>2

x2  0
0

 ; apply l’Hôpital’s Rule.

 = lim
xS0

 
(1>2)(1 + x)-1>2 - 1>2

2x
 Still 

0
0

 ; apply l’Hôpital’s Rule again.

 = lim
xS0

 
-(1>4)(1 + x)-3>2

2
= -  18 Not 

0
0

 ; limit is found.

Caution
To apply l’Hôpital’s Rule to ƒ>g, divide 
the derivative of ƒ by the derivative of 
g. Do not fall into the trap of taking the 
derivative of ƒ>g. The quotient to use is 
ƒ′>g′, not (ƒ>g)′.
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(d) lim
xS0

 
x - sin x

x3  0
0

 ; apply l’Hôpital’s Rule.

 = lim
xS0

 
1 - cos x

3x2  Still 
0
0

 ; apply l’Hôpital’s Rule again.

  = lim
xS0

 
sin x
6x

 Still 
0
0

 ; apply l’Hôpital’s Rule again.

  = lim
xS0

 
cos x

6
= 1

6
 Not 

0
0

 ; limit is found. 

 Here is a summary of the procedure we followed in Example 1.

Using L’Hôpital’s Rule 

To find

lim
xSa

   
ƒ(x)
g(x)

by l’Hôpital’s Rule, we continue to differentiate ƒ and g, so long as we still get 
the form 0>0 at x = a. But as soon as one or the other of these derivatives is 
different from zero at x = a we stop differentiating. L’Hôpital’s Rule does not 
apply when either the numerator or denominator has a finite nonzero limit.

ExamplE 2  Be careful to apply l’Hôpital’s Rule correctly:

lim
xS0

 
1 - cos x

x + x2     0
0

= lim
xS0

 
sin x

1 + 2x
  Not 

0
0

It is tempting to try to apply l’Hôpital’s Rule again, which would result in

lim
xS0

 
cos x

2
= 1

2
,

but this is not the correct limit. L’Hôpital’s Rule can be applied only to limits that give 
indeterminate forms, and limxS0 (sin x)>(1 + 2x) does not give an indeterminate form. 
Instead, this limit is 0>1 = 0, and the correct answer for the original limit is 0. 

L’Hôpital’s Rule applies to one-sided limits as well.

ExamplE 3  In this example the one-sided limits are different.

(a) lim
xS0+

 
sin x

x2  0
0

   = lim
xS0+

 
cos x

2x
= q Positive for x 7 0

(b) lim
xS0-

 
sin x

x2  0
0

   = lim
xS0-

 
cos x

2x
= -q Negative for x 6 0 

Indeterminate Forms H,H, H # 0, H − H
Sometimes when we try to evaluate a limit as x S a by substituting x = a we get an inde-
terminant form like q>q, q # 0, or q - q, instead of 0>0. We first consider the form 
q>q.

Recall that q and +q mean the same 
thing.
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More advanced treatments of calculus prove that l’Hôpital’s Rule applies to the  
indeterminate form q>q, as well as to 0>0. If ƒ(x) S {q and g(x) S {q as x S a, 
then

lim
xSa

   
ƒ(x)
g(x)

= lim
xSa

   
ƒ′(x)
g′(x)

provided the limit on the right exists. In the notation x S a, a may be either finite or infi-
nite. Moreover, x S a may be replaced by the one-sided limits x S a+ or x S a-.

ExamplE 4  Find the limits of these q>q forms:

(a) lim
xSp>2

  
sec x

1 + tan x
 (b) lim

xSq
  

ln x

22x
 (c) lim

xSq
  
ex

x2 .

solution
 (a) The numerator and denominator are discontinuous at x = p>2, so we investigate the 

one-sided limits there. To apply l’Hôpital’s Rule, we can choose I to be any open 
interval with x = p>2 as an endpoint.

lim
xS(p>2)-

 
sec x

1 + tan x
  

q
q from the left so we apply l’Hôpital’s Rule.

 = lim
xS(p>2)-

 
sec x tan x

sec2 x
= lim

xS(p>2)-
 sin x = 1

  The right-hand limit is 1 also, with (-q)>(-q) as the indeterminate form. Therefore, 
the two-sided limit is equal to 1.

 (b) lim
xSq

  
ln x

22x
= lim

xSq
  

1>x
1>2x

= lim
xSq

  12x
= 0  

1>x
1>2x

= 2x
x = 12x

 (c) lim
xSq

  
ex

x2 = lim
xSq

  
ex

2x
= lim

xSq
  
ex

2
= q 

Next we turn our attention to the indeterminate forms q # 0 and q - q. Sometimes 
these forms can be handled by using algebra to convert them to a 0>0 or q>q form. Here 
again we do not mean to suggest that q # 0 or q - q is a number. They are only nota-
tions for functional behaviors when considering limits. Here are examples of how we 
might work with these indeterminate forms.

ExamplE 5  Find the limits of these q # 0 forms:

(a) lim
xSq
ax sin 1xb  (b) lim

xS0+
 2x ln x

solution

 a. lim
xSq
ax sin 1xb = lim

hS0+
a1

h
 sin hb =  lim

hS0+
 
sin h

h
= 1 q # 0; let h = 1>x.

 b.  lim
xS0+

 2x ln x = lim
xS0+

 
ln x

1>2x
 q # 0 converted to q>q

   = lim
xS0+

 
1>x

-1>2x3>2  l’Hôpital’s Rule applied

   = lim
xS0+
1-22x2 = 0 
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ExamplE 6  Find the limit of this q - q form:

lim
xS0
a 1

sin x
- 1

xb .

solution If x S 0+, then sin x S 0+ and

1
sin x

- 1
x S q - q.

Similarly, if x S 0-, then sin x S 0- and

1
sin x

- 1
x S - q - (-q) = -q + q.

Neither form reveals what happens in the limit. To find out, we first combine the fractions:

1
sin x

- 1
x = x - sin x

x sin x
.  Common denominator is x sin x.

Then we apply l’Hôpital’s Rule to the result:

 lim
xS0
a 1

sin x
- 1

xb = lim
xS0

  
x - sin x

x sin x
  0

0

 = lim
xS0

  
1 - cos x

sin x + x cos x
  Still 

0
0

 = lim
xS0

  
sin x

2 cos x - x sin x
= 0

2
= 0. 

indeterminate Powers

Limits that lead to the indeterminate forms 1q, 00, and q0 can sometimes be handled by 
first taking the logarithm of the function. We use l’Hôpital’s Rule to find the limit of the 
logarithm expression and then exponentiate the result to find the original function limit. 
This procedure is justified by the continuity of the exponential function and Theorem 10 in 
Section 2.5, and it is formulated as follows. (The formula is also valid for one-sided limits.)

If limxSa ln ƒ(x) = L, then

lim
xSa

 ƒ(x) = lim
xSa

 eln ƒ(x) = eL.

Here a may be either finite or infinite.

ExamplE 7  Apply l’Hôpital’s Rule to show that limxS0+ (1 + x)1>x = e.

solution The limit leads to the indeterminate form 1q. We let ƒ(x) = (1 + x)1>x and 
find limxS0+ ln ƒ(x). Since

ln ƒ(x) = ln (1 + x)1>x = 1
x ln (1 + x),

l’Hôpital’s Rule now applies to give

 lim
xS0+

 ln ƒ(x) = lim
xS0+

 
ln (1 + x)

x   0
0

 = lim
xS0+

 

1
1 + x

1
  l’Hôpital’s Rule applied

 = 1
1

= 1.

Therefore, lim
xS0+

 (1 + x)1>x = lim
xS0+

 ƒ(x) = lim
xS0+

 eln ƒ(x) = e1 = e. 
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ExamplE 8  Find limxSq  x1>x.

Solution The limit leads to the indeterminate form q0. We let ƒ(x) = x1>x and find 
limxSq ln ƒ(x). Since

 ln ƒ(x) = ln x1>x = ln x
x  ,

l’Hôpital’s Rule gives

 lim
xSq

 ln ƒ(x) = lim
xSq

 
ln x

x   
q
q

 = lim
xSq

 
1>x
1

  l’Hôpital’s Rule applied

 = 0
1

= 0.

Therefore lim
xSq

 x1>x = lim
xSq

 ƒ(x) = lim
xSq

 eln ƒ(x) = e0 = 1. 

Proof of L’Hôpital’s Rule

Before we prove l’Hôpital’s Rule, we consider a special case to provide some geometric 
insight for its reasonableness. Consider the two functions ƒ(x) and g(x) having continuous 
derivatives and satisfying ƒ(a) = g(a) = 0, g′(a) ≠ 0. The graphs of ƒ(x) and g(x), 
together with their linearizations y = ƒ′(a)(x - a) and y = g′(a)(x - a), are shown in 
Figure 4.34. We know that near x = a, the linearizations provide good approximations to 
the functions. In fact,

ƒ(x) = ƒ′(a)(x - a) + P1(x - a) and g(x) = g′(a)(x - a) + P2(x - a)

where P1 S 0 and P2 S 0 as x S a. So, as Figure 4.34 suggests,

 lim
xSa

  
ƒ(x)
g(x)

= lim
xSa

  
ƒ′(a)(x - a) + P1(x - a)
g′(a)(x - a) + P2(x - a)

 = lim
xSa

  
ƒ′(a) + P1

g′(a) + P2
=

ƒ′(a)
g′(a)

 g′(a) ≠ 0

 = lim
xSa

  
ƒ′(x)
g′(x)

,  Continuous derivatives

as asserted by l’Hôpital’s Rule. We now proceed to a proof of the rule based on the more 
general assumptions stated in Theorem 6, which do not require that g′(a) ≠ 0 and that 
the two functions have continuous derivatives.

The proof of l’Hôpital’s Rule is based on Cauchy’s Mean Value Theorem, an exten-
sion of the Mean Value Theorem that involves two functions instead of one. We prove 
Cauchy’s Theorem first and then show how it leads to l’Hôpital’s Rule.

THEOREM 7—Cauchy’s Mean Value Theorem Suppose functions ƒ and g 
are continuous on 3a, b4  and differentiable throughout (a, b) and also suppose 
g′(x) ≠ 0 throughout (a, b). Then there exists a number c in (a, b) at which

ƒ′(c)
g′(c)

=
ƒ(b) - ƒ(a)
g(b) - g(a)

.

Historical BiograpHy

Augustin-Louis Cauchy
(1789–1857)

0 a

y

y = f ′(a)(x − a)

y = g′(a)(x − a)

f (x)

g(x)
x

FiguRE 4.34 The two functions in 
l’Hôpital’s Rule, graphed with their  
linear approximations at x = a.

Proof  We apply the Mean Value Theorem of Section 4.2 twice. First we use it to show 
that g(a) ≠ g(b). For if g(b) did equal g(a), then the Mean Value Theorem would give

g′(c) =
g(b) - g(a)

b - a
= 0

When g(x) = x, Theorem 7 is the Mean 
Value Theorem.
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for some c between a and b, which cannot happen because g′(x) ≠ 0 in (a, b).
We next apply the Mean Value Theorem to the function

F(x) = ƒ(x) - ƒ(a) -
ƒ(b) - ƒ(a)
g(b) - g(a)

 3g(x) - g(a)4 .

This function is continuous and differentiable where ƒ and g are, and F(b) = F(a) = 0. 
Therefore, there is a number c between a and b for which F′(c) = 0. When expressed in 
terms of ƒ and g, this equation becomes

F′(c) = ƒ′(c) -
ƒ(b) - ƒ(a)
g(b) - g(a)

 3g′(c)4 = 0

so that

 
ƒ′(c)
g′(c)

=
ƒ(b) - ƒ(a)
g(b) - g(a)

. 

Cauchy’s Mean Value Theorem has a geometric interpretation for a general winding 
curve C in the plane joining the two points A = (g(a), ƒ(a)) and B = (g(b), ƒ(b)). In 
Chapter 11 you will learn how the curve C can be formulated so that there is at least one 
point P on the curve for which the tangent to the curve at P is parallel to the secant line 
joining the points A and B. The slope of that tangent line turns out to be the quotient ƒ′>g′ 
evaluated at the number c in the interval (a, b), which is the left-hand side of the equation 
in Theorem 7. Because the slope of the secant line joining A and B is

ƒ(b) - ƒ(a)
g(b) - g(a)

,

the equation in Cauchy’s Mean Value Theorem says that the slope of the tangent line 
equals the slope of the secant line. This geometric interpretation is shown in Figure 4.35. 
Notice from the figure that it is possible for more than one point on the curve C to have a 
tangent line that is parallel to the secant line joining A and B.

Proof of l’hôpital’s rule  We first establish the limit equation for the case x S a+. 
The method needs almost no change to apply to x S a-, and the combination of these two 
cases establishes the result.

Suppose that x lies to the right of a. Then g′(x) ≠ 0, and we can apply Cauchy’s 
Mean Value Theorem to the closed interval from a to x. This step produces a number c 
between a and x such that

ƒ′(c)
g′(c)

=
ƒ(x) - ƒ(a)
g(x) - g(a)

.

But ƒ(a) = g(a) = 0, so

ƒ′(c)
g′(c)

=
ƒ(x)
g(x)

.

As x approaches a, c approaches a because it always lies between a and x. Therefore,

lim
xSa+

  
ƒ(x)
g(x)

= lim
cSa+

  
ƒ′(c)
g′(c)

= lim
xSa+

  
ƒ′(x)
g′(x)

,

which establishes l’Hôpital’s Rule for the case where x approaches a from above. The case 
where x approaches a from below is proved by applying Cauchy’s Mean Value Theorem to 
the closed interval 3x, a4 , x 6 a. 

0

y

(g(a), f (a))

(g(b), f (b))
P

B

A

slope =
f (b) − f (a)
g(b) − g(a)

x

slope =
f ′(c)
g′(c)

Figure 4.35 There is at least one point 
P on the curve C for which the slope of the 
tangent to the curve at P is the same as the 
slope of the secant line joining the points 
A(g(a), ƒ(a)) and B(g(b), ƒ(b)).
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Finding Limits in two ways
In Exercises 1–6, use l’Hôpital’s Rule to evaluate the limit. Then 
evaluate the limit using a method studied in Chapter 2.

 1. lim
xS-2

 
x + 2
x2 - 4

 2. lim
xS0

 
sin 5x

x

 3. lim
xSq

 
5x2 - 3x
7x2 + 1

 4. lim
xS1

 
x3 - 1

4x3 - x - 3

 5. lim
xS0

 
1 - cos x

x2  6. lim
xSq

 
2x2 + 3x

x3 + x + 1

Applying l’hôpital’s rule
Use l’Hôpital’s rule to find the limits in Exercises 7–50.

 7. lim
xS2

 
x - 2
x2 - 4

 8. lim
xS - 5

 
x2 - 25
x + 5

 9. lim
tS-3 

t3 - 4t + 15
t2 - t - 12

 10. lim
tS-1

 
3t3 + 3

4t3 - t + 3

 11. lim
xSq

 
5x3 - 2x
7x3 + 3

 12. lim
xSq

 
x - 8x2

12x2 + 5x

 13. lim
tS0

 
sin t2

t  14. lim
tS0

 
sin 5t

2t

 15. lim
xS0

 
8x2

cos x - 1
 16. lim

xS0
 
sin x - x

x3

 17. lim
uSp>2

 
2u - p

cos (2p - u)
 18. lim

uS-p>3
 

3u + p

sin (u + (p>3))

 19. lim
uSp>2

 
1 - sin u

1 + cos 2u
 20. lim

xS1
 

x - 1
ln x - sin px

 21. lim
xS0

 
x2

ln (sec x)
 22. lim

xSp>2
 

ln (csc x)

(x - (p>2))2

 23. lim
tS0

 
t(1 - cos t)

t - sin t
 24. lim

tS0
 

t sin t
1 - cos t

 25. lim
xS(p>2)-

ax - p

2
b  sec x 26. lim

xS(p>2)-
 ap

2
- xb  tan x

 27. lim
uS0

 
3sin u - 1

u
 28. lim

uS0
 
(1>2)u - 1

u

 29. lim
xS0

 
x2x

2x - 1
 30. lim

xS0
 
3x - 1
2x - 1

 31. lim
xSq

 
ln (x + 1)

log2 x
 32. lim

xSq
 

log2 x
log3 (x + 3)

 33. lim
xS0+

 
ln (x2 + 2x)

ln x
 34. lim

xS0+
 
ln (ex - 1)

ln x

 35. lim
yS0

 
25y + 25 - 5

y  36. lim
yS0

 
2ay + a2 - a

y , a 7 0

 37. lim
xSq

 (ln 2x - ln (x + 1)) 38. lim
xS0+

 (ln x - ln sin x)

 39. lim
xS0+

 
(ln x)2

ln (sin x)
 40. lim

xS0+
 a3x + 1

x - 1
sin x
b

 41. lim
xS1+

 a 1
x - 1

- 1
ln x
b  42. lim

xS0+
 (csc x - cot x + cos x)

 43. lim
uS0

 
cos u - 1

eu - u - 1
 44. lim

hS0
 
eh - (1 + h)

h2

 45. lim
tSq

 
et + t2

et - t
 46. lim

xSq
 x2e-x

 47.  lim
xS0

 
x - sin x

x tan x  48.  lim
xS0

 
(ex - 1)2

x sin x

 49.  lim
uS0

 
u - sin u cos u

tan u - u
 50.  lim

xS0
 
sin 3x - 3x + x2

sin x sin 2x

indeterminate Powers and Products
Find the limits in Exercises 51–66.

 51. lim
xS1+

 x1>(1 - x) 52. lim
xS1+

 x1>(x - 1)

 53. lim
xSq

 (ln x)1>x 54. lim
xSe+

 (ln x)1>(x - e)

 55. lim
xS0+

 x-1>ln x 56. lim
xS  q

 x1>ln x

 57. lim
xSq

 (1 + 2x)1>(2 ln x) 58. lim
xS0

 (ex + x)1>x

 59. lim
xS0+  

xx 60. lim
xS0+

 a1 + 1
xb

x

 61. lim
xSq

 ax + 2
x - 1

b
x

 62.  lim
xSq

 ax
2 + 1

x + 2
b

1>x

 63.  lim
xS0+

 x2 ln x 64.  lim
xS0+

 x (ln x)2

 65.  lim
xS0+

 x tan ap
2

- xb  66.  lim
xS0+

 sin x # ln x

theory and Applications
L’Hôpital’s Rule does not help with the limits in Exercises 67–74. Try 
it—you just keep on cycling. Find the limits some other way.

 67. lim
xSq

 
29x + 12x + 1

 68. lim
xS0+

 
2x2sin x

 69. lim
xS(p>2)-

  
sec x
tan x  70. lim

xS0+
  
cot x
csc x

 71.  lim
xSq

 
2x - 3x

3x + 4x 72.  lim
xS-q

 
2x + 4x

5x - 2x

 73.  lim
xSq

 
ex2

xex 74.  lim
xS0+

 
x

e-1>x

 75. Which one is correct, and which one is wrong? Give reasons for 
your answers.

 a. lim
xS3

  
x - 3
x2 - 3

= lim
xS3

  
1
2x

= 1
6

 b. lim
xS3

  
x - 3
x2 - 3

= 0
6

= 0

 76. Which one is correct, and which one is wrong? Give reasons for 
your answers.

 a.  lim
xS0

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

   = lim
xS0

 
2

2 + sin x
= 2

2 + 0
= 1

 b.  lim
xS0

 
x2 - 2x

x2 - sin x
= lim

xS0
 

2x - 2
2x - cos x

= -2
0 - 1

= 2

exercises 4.5
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 a. Use l’Hôpital’s Rule to show that

lim
xSq

 a1 + 1
xb

x

= e.

 b. Graph

ƒ(x) = a1 + 1
x2b

x

 and g(x) = a1 + 1
xb

x

  together for x Ú 0. How does the behavior of ƒ compare with 
that of g? Estimate the value of limxSq ƒ(x).

 c. Confirm your estimate of limxSq ƒ(x) by calculating it with 
l’Hôpital’s Rule.

85. Show that

lim
kSq

 a1 + r
k
b

k

= er.

86. Given that x 7 0, find the maximum value, if any, of

 a. x1>x

 b. x1>x2

 c. x1>xn
 (n a positive integer)

 d. Show that limxSq x1>xn = 1 for every positive integer n.

87. Use limits to find horizontal asymptotes for each function.

 a. y = x tan a1xb     b. y = 3x + e2x

2x + e3x

88. Find ƒ′(0) for ƒ(x) = e e-1/x2
, x ≠ 0

0, x = 0.

89. The continuous extension of (sin x)x to 30, p 4
 a. Graph ƒ(x) = (sin x)x on the interval 0 … x … p. What 

value would you assign to ƒ to make it continuous at x = 0?

 b. Verify your conclusion in part (a) by finding limxS0+ ƒ(x) 
with l’Hôpital’s Rule.

 c. Returning to the graph, estimate the maximum value of ƒ on 
30, p4 . About where is max ƒ taken on?

 d. Sharpen your estimate in part (c) by graphing ƒ′ in the same 
window to see where its graph crosses the x-axis. To simplify 
your work, you might want to delete the exponential factor 
from the expression for ƒ′ and graph just the factor that has a 
zero.

90. The function (sin x)tan x (Continuation of Exercise 89.)

 a. Graph ƒ(x) = (sin x)tan x on the interval -7 … x … 7. How 
do you account for the gaps in the graph? How wide are the 
gaps?

 b. Now graph ƒ on the interval 0 … x … p. The function is not 
defined at x = p>2, but the graph has no break at this point. 
What is going on? What value does the graph appear to give 
for ƒ at x = p>2? (Hint: Use l’Hôpital’s Rule to find lim ƒ 
as x S (p>2)- and x S (p>2)+.)

 c. Continuing with the graphs in part (b), find max ƒ and min ƒ 
as accurately as you can and estimate the values of x at which 
they are taken on.

t

t

t

 77. Only one of these calculations is correct. Which one? Why are the 
others wrong? Give reasons for your answers.

 a. lim
xS0+

 x ln x = 0 # (-q) = 0

 b. lim
xS0+

 x ln x = 0 # (-q) = -q

 c. lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)
= -q

q = -1

 d.  lim
xS0+

 x ln x = lim
xS0+

 
ln x

(1>x)

   = lim
xS0+

 
(1>x)

(-1>x2)
= lim

xS0+
 (-x) = 0

 78. Find all values of c that satisfy the conclusion of Cauchy’s Mean 
Value Theorem for the given functions and interval.

 a. ƒ(x) = x,  g(x) = x2,  (a, b) = (-2, 0)

 b. ƒ(x) = x,  g(x) = x2,  (a, b) arbitrary

 c. ƒ(x) = x3>3 - 4x,  g(x) = x2,  (a, b) = (0, 3)

 79. Continuous extension Find a value of c that makes the function

ƒ(x) = c 9x - 3 sin 3x
5x3 , x ≠ 0

c, x = 0

  continuous at x = 0. Explain why your value of c works.

 80. For what values of a and b is 

 lim
xS0

 atan 2x
x3 + a

x2 + sin bx
x b = 0?

 81. H −  H Form

 a. Estimate the value of

lim
xSq 1x - 2x2 + x2

  by graphing ƒ(x) = x - 2x2 + x over a suitably large inter-
val of x-values.

 b. Now confirm your estimate by finding the limit with 
l’Hôpital’s Rule. As the first step, multiply ƒ(x) by the frac-
tion 1x + 2x2 + x2>1x + 2x2 + x2 and simplify the new 
numerator.

 82. Find lim
xSq

 12x2 + 1 - 2x2.
83. 0 ,0 Form Estimate the value of

lim
xS1

 
2x2 - (3x + 1)2x + 2

x - 1

by graphing. Then confirm your estimate with l’Hôpital’s Rule.

84. This exercise explores the difference between the limit

lim
xSq

 a1 + 1
x2b

x

and the limit

lim
xSq

 a1 + 1
xb

x

= e.

t

t



4.6 Applied Optimization

What are the dimensions of a rectangle with fixed perimeter having maximum area?
What are the dimensions for the least expensive cylindrical can of a given volume? How 
many items should be produced for the most profitable production run? Each of these 
questions asks for the best, or optimal, value of a given function. In this section we use 
derivatives to solve a variety of optimization problems in mathematics, physics, econom-
ics, and business.

Solving Applied Optimization Problems
1. Read the problem. Read the problem until you understand it. What is given? 

What is the unknown quantity to be optimized?

2. Draw a picture. Label any part that may be important to the problem.

3. Introduce variables. List every relation in the picture and in the problem as 
an equation or algebraic expression, and identify the unknown variable.

4. Write an equation for the unknown quantity. If you can, express the unknown 
as a function of a single variable or in two equations in two unknowns. This 
may require considerable manipulation.

5. Test the critical points and endpoints in the domain of the unknown. Use 
what you know about the shape of the function’s graph. Use the first and 
second derivatives to identify and classify the function’s critical points.

EXAMPLE 1  An open-top box is to be made by cutting small congruent squares from 
the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should 
the squares cut from the corners be to make the box hold as much as possible?

Solution We start with a picture (Figure 4.36). In the figure, the corner squares are x in. 
on a side. The volume of the box is a function of this variable:

V(x) = x(12 - 2x)2 = 144x - 48x2 + 4x3. V = hlw

Since the sides of the sheet of tin are only 12 in. long, x … 6 and the domain of V is the 
interval 0 … x … 6.

A graph of V (Figure 4.37) suggests a minimum value of 0 at x = 0 and x = 6 and 
a maximum near x = 2. To learn more, we examine the first derivative of V with respect 
to x:

dV
dx

= 144 - 96x + 12x2 = 12(12 - 8x + x2) = 12(2 - x)(6 - x).

Of the two zeros, x = 2 and x = 6, only x = 2 lies in the interior of the function’s 
domain and makes the critical-point list. The values of V at this one critical point and two 
endpoints are

Critical point value: V(2) = 128

Endpoint values: V(0) = 0, V(6) = 0.

The maximum volume is 128 in3. The cutout squares should be 2 in. on a side.

12

12

12

x

x
x

x

x

xx

(a)

(b)

12 − 2x

12 − 2x

FIGURE 4.36 An open box made by 
cutting the corners from a square sheet of 
tin. What size corners maximize the box’s 
volume (Example 1)?

x

y

0

min

2 6

min

V
ol

um
e

Maximum

y = x(12 − 2x)2,
0 ≤ x ≤ 6

NOT TO SCALE

FIGURE 4.37 The volume of the box in 
Figure 4.36 graphed as a function of x.
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