
TESTING STRATEGIES

Sameera Abu Ghalyoun

PPU



INDEX

Strategic Approach to Software Testing.

Strategic Issues.

Test Conventional Software.

Test Strategies for Object-Oriented Software.

Test Strategies for WebApps.

Validation Testing.

System Testing.

The Art of Debugging.

Software Testing Fundamentals.

White-Box Testing.

Basis Path Testing.

Control Structure Testing.



Strategic Approach to 
Software Testing

• To perform effective testing, a software team should
conduct effective formal technical reviews.

• Testing begins at the component level and work outward
toward the integration of the entire computer-based system.

• Different testing techniques are appropriate at different
points in time.

• Testing is conducted by the developer of the software and
(for large projects) by an independent test group.

• Testing and debugging are different activities, but
debugging must be accommodated in any testing strategy.



Verification 
and Validation

• Software testing is part of a broader group of activities
called verification and validation that are involved in
software quality assurance

• Verification (Are the algorithms coded correctly?) – The
set of activities that ensure that software correctly
implements a specific function or algorithm

• Validation (Does it meet user requirements?) – The set of
activities that ensure that the software that has been built
is traceable to customer requirements.

• Verification: “Are we building the product right?”

• Validation: “Are we building the right product?”



Organizing for Software Testing

• Testing should aim at "breaking" the software.

• Common misconceptions – The developer of software should do no testing at all

• that the software should be “tossed over the wall” to strangers who will test it mercilessly.

• that testers get involved with the project only when the testing steps are about to begin.

• software architecture is complete does an independent test group become involved.

• The role of an independent test group (ITG) is to remove the inherent problems associated
with letting the builder test the thing that has been built.

• Independent testing removes the conflict of interest that may otherwise be present.



Testing 
Strategy



Criteria for 
Completion 
of Testing

when is testing completed ?? 

• A classic question arises every time software testing is
discussed: “When are we done testing—how do we know
that we’ve tested enough?” Sadly, there is no definitive,

• answer to this question, but there are a few pragmatic
responses and early attempts at empirical guidance.

• By collecting metrics during software testing and making
use of existing software reliability models, it is possible to
develop meaningful guidelines for answering the
question: “When are we done testing?”



Strategic Issues

Specify product 
requirements in a 
quantifiable manner 
long before testing 
commences. 

1

State testing 
objectives explicitly. 

2

Understand the users 
of the software and 
develop a profile for 
each user category. 

3

Develop a testing 
plan that emphasizes 
“rapid cycle testing.”

4



Test Strategies for Conventional Software

Unit
testing

Focuses testing on the function or software module.

Concentrates on the internal processing logic and data structures.

Is simplified when a module is designed with high cohesion – Reduces the
number of test cases – Allows errors to be more easily predicted and uncovered.

Concentrates on critical modules and those with high cyclomatic complexity
when testing resources are limited.



Unit Testing



Unit testing considerations 

• Module interface – Ensure that information flows properly into

and out of the module.

• Local data structures – Ensure that data stored temporarily

maintains its integrity during all steps in an algorithm execution.

• Boundary conditions – Ensure that the module operates properly

at boundary values established to limit or restrict processing.

• Independent paths (basis paths) – Paths are exercised to ensure

that all statements in a module have been executed at least once.

• Error handling paths – Ensure that the algorithms respond

correctly to specific error conditions.



Unit test 
procedures

Driver – A simple main program that accepts test case 
data, passes such data to the component being tested, 
and prints the returned results.

Stubs – Serve to replace modules that are subordinate 
to (called by) the component to be tested – It uses the 
module’s exact interface, may do minimal data 
manipulation, provides verification of entry, and 
returns control to the module undergoing testing. 

Drivers and stubs both represent testing overhead. –
Both must be written but don’t constitute part of the 
installed software product.



Unit Test 
Environment



Integration testing

• Defined as a systematic technique for constructing the software architecture – At the same 
time integration is occurring, conduct tests to uncover errors associated with interfaces. 

• Objective is to take unit tested modules and build a program structure based on the 
prescribed design. 

• Two Approaches 

– Non-incremental Integration Testing.

– Incremental Integration Testing.



Non-incremental 
Integration Testing

• Uses “Big Bang” approach. 

• All components are combined in advance. 

• The entire program is tested as a whole Chaos 
results. 

• Many seemingly-unrelated errors are 
encountered. 

• Correction is difficult because isolation of 
causes is complicated. 

• Once a set of errors are corrected, more errors 
occur, and testing appears to enter an endless 
loop.



Incremental 
Integration Testing

• The program is constructed and tested in small 
increments. 

• Errors are easier to isolate and correct. 

• Interfaces are more likely to be tested completely. 

• A systematic test approach is applied.

• Different incremental integration strategies 

– Top-down integration 

– Bottom-up integration 

– Regression testing 

– Smoke testing



Top-down 
Integration

• Modules are integrated by moving downward through the control 
hierarchy, beginning with the main module. 

• Subordinate modules are incorporated in two ways : – depth-first : 
All modules on a major control path are integrated – breadth-first : 
All modules directly subordinate at each level are integrated.

• Advantages:

– This approach verifies major control or decision points 
early in the test process.

• Disadvantages: 

– Stubs need to be created to substitute for modules that 
have not been built or tested yet; this code is later discarded. 

– Because stubs are used to replace lower level modules, 
no significant data flow can occur until much later in the 
integration/testing process



• For example, selecting the 
left-hand path, components 
M1, M2, M5 would be 
integrated first.

• Next, M8 or (if necessary for 
proper functioning of M2) 
M6 would be integrated. 

• Then, the central and right-
hand control paths are built. 



Bottom-up 
Integration

• Integration and testing starts with the most atomic
modules in the control hierarchy.

• Advantages

– This approach verifies low-level data processing
early in the testing process – Need for stubs is eliminated.

• Disadvantages

– Driver modules need to be built to test the lower-
level modules; this code is later discarded or expanded into
a full-featured version.

– Drivers inherently do not contain the complete
algorithms that will eventually use the services of the lower-
level modules; consequently, testing may be incomplete or
more testing may be needed later when the upper level
modules are available.



• Integration follows the pattern 
illustrated in Figure 
Components are combined to 
form clusters 1, 2, and 3. 

• Each of the clusters is tested 
using a driver (shown as a 
dashed block). 

• Components in clusters 1 and 2 
are subordinate to Ma. Drivers 
D1and D2 are removed and the 
clusters are interfaced directly to 
Ma. 

• Similarly, driver D3 for cluster 3 
is removed prior to integration 
with module Mb. Both Ma and 
Mb will ultimately be integrated 
with component Mc, and so 
forth. 2



Regression Testing

• Each new addition or modification of data may cause problems with 
functions that previously worked flawlessly. 

• Regression testing re-executes a small subset of tests that have already 
been conducted:

– Ensures that changes have not propagated unintended side effects.

– Helps to ensure that changes do not introduce unintended behavior or 
additional errors. 

– May be done manually or through the use of automated 
capture/playback tools. 

• Regression test suite contains three different classes of test cases: 

– A representative sample of tests that will exercise all software 
functions. 

– Additional tests that focus on software functions that are likely to be 
affected by the change. 

– Tests that focus on the actual software components that have been 
changed 



Smoke testing

• Designed as a pacing mechanism for time-critical projects 

– Allows the software team to assess its project on a frequent 
basis. 

• Includes the following activities: 

– The software components that have been translated into code 
and linked into a build. 

– A series of breadth tests is designed to expose errors that will 
keep the build from properly performing its function. 

• The goal is to uncover “show stopper” errors that have the 
highest likelihood of throwing the software project behind 
schedule. 

– The build is integrated with other builds and the entire product 
is smoke tested daily. 



Test 
Strategies for 

Object-
Oriented 
Software

Unit testing in OO context :

• Class testing for object-oriented software is

o the equivalent of unit testing for conventional software

o Focuses on operations encapsulated by the class and the

state behavior of the class

• Integration testing in OO context: Two different

object-oriented integration testing strategies are:

First– Thread-based testing :

o Integrates the set of classes required to respond to one input

or event for the system.

o Each thread is integrated and tested individually.



Test 
Strategies for 

Object-
Oriented 
Software

Integration test in OO context:

- Second :-Regression testing is applied to ensure that

no side effects occur – Use-based testing

• First tests the independent classes that use very few, if any,

server classes.

• Then the next layer of classes, called dependent classes, are

integrated.

• This sequence of testing layer of dependent classes

continues until the entire system is constructed.



Test Strategies for Web Apps

• The strategy for WebApp testing adopts the basic principles for all software testing and applies a strategy

and tactics that are used for object-oriented systems.

The following steps summarize the approach:

1. The content model for the WebApp is reviewed to uncover errors.

2. The interface model is reviewed to ensure that all use cases can be accommodated.

3. The design model for the WebApp is reviewed to uncover navigation errors.

4. The user interface is tested to uncover errors in presentation and/or navigation mechanics.



5. Each functional component is unit tested.

6. Navigation throughout the architecture is tested.

7. The WebApp is implemented in a variety of different environmental configurations and is tested for

compatibility with each configuration.

8. Security tests are conducted in an attempt to exploit vulnerabilities in the WebApp or within its environment

9. Performance tests are conducted.

10. The WebApp is tested by a controlled and monitored population of end users.

The results of their interaction with the system are evaluated for content and navigation errors, usability

concerns, compatibility concerns, and WebApp reliability and performance.



Validation Testing
• Validation testing follows integration testing.

• The distinction between conventional and object-oriented software disappears and Focuses on user-
visible actions and user-recognizable output from the system.

Validation test criteria :

• Demonstrates conformity with requirements.

• Designed to ensure that All functional requirements are satisfied, all behavioral characteristics are
achieved, all performance requirements are attained.

• Documentation is correct.

• Usability and other requirements are met (e.g., transportability, compatibility, error recovery,
maintainability).

• After each validation test

– The function or performance characteristic conforms to specification and is accepted.

– A deviation from specification is uncovered and a deficiency list is created



Configuration review:

• The intent of this review is to ensure that all elements of the software configuration have been properly
developed, are cataloged, and have the necessary detail to bolster the support activities.

Alpha and beta testing :

• Alpha testing conducted at the developer’s site by end users

– Software is used in a natural setting with developers watching intently.

– Testing is conducted in a controlled environment.

• Beta testing conducted at end-user sites:

– Developer is generally not present.

– It serves as a live application of the software in an environment that cannot be controlled by the
developer.

– The end-user records all problems that are encountered and reports these to the developers at regular
intervals.

• After beta testing is complete, software engineers make software modifications and prepare for release of the
software product to the entire customer base.



System Testing

• Software may be part of a larger system. This often leads

to “finger pointing” by other system dev teams.

• Finger pointing defense:

1. Design error-handling paths that test external

information.

2. Conduct a series of tests that simulate bad data.

3. Record the results of tests to use as evidence.



System Testing

• Types of System Testing:

− Recovery testing: how well and quickly does the system

recover from faults.

− Security testing: verify that protection mechanisms built into

the system will protect from unauthorized access (hackers,

disgruntled employees, fraudsters).

− Stress testing: place abnormal load on the system.

− Performance testing: investigate the run-time performance

within the context of an integrated system .



The Art of Debugging

• Debugging is not testing but often occurs as a consequence of testing.

• The debugging process begins with the execution of a test case.

• Results are assessed and a lack of correspondence between expected and actual performance is
encountered.

• In many cases, the noncorresponding data are a symptom of an underlying cause as yet hidden.

• The debugging process attempts to match symptom with cause, thereby leading to error correction.

• The debugging process will usually have one of two outcomes:

(1) the cause will be found and corrected.

(2) the cause will not be found.

• In the latter case, the person performing debugging may suspect a cause, design a test case to help
validate that suspicion, and work toward error correction in an iterative fashion.





Software Testing Fundamentals

• The goal of testing is to find errors, and a good test is one that has a high probability of finding an error. 

• Therefore, you should design and implement a computer-based system or a product with “testability” in 

mind. 

• At the same time, the tests themselves must exhibit a set of characteristics that achieve the goal of finding 

the most errors with a minimum of effort.

Testability: James Bach1 provides the following definition for testability: “Software testability is 

simply how easily [a computer program] can be tested.” The following characteristics lead to testable 

software.



Software Testing Fundamentals

Operability: “The better it works, the more efficiently it can be tested.” If a system is designed and implemented with 

quality in mind, relatively few bugs will block the execution of tests, allowing testing to progress without fits and starts.

Observability: “What you see is what you test.” Inputs provided as part of testing produce distinct outputs. System 

states and variables are visible or quarriable during execution. Incorrect output is easily identified. Internal errors are 

automatically detected and reported. Source code is accessible. 

Controllability: “The better we can control the software, the more the testing can be automated and optimized.” All 

possible outputs can be generated through some combination of input, and I/O formats are consistent and structured. All 

code is executable through some combination of input. Software and hardware states and variables can be controlled 

directly by the test engineer. 



Decomposability: “By controlling the scope of testing, we can more quickly isolate problems and perform

smarter retesting.” The software system is built from independent modules that can be tested independently.

Simplicity: “The less there is to test, the more quickly we can test it.” The program should exhibit functional

simplicity (e.g., the feature set is the minimum necessary to meet requirements); structural simplicity (e.g.,

architecture is modularized to limit the propagation of faults), and code simplicity (e.g., a coding standard is

adopted for ease of inspection and maintenance).

Stability: “The fewer the changes, the fewer the disruptions to testing.” Changes to the software are

infrequent, controlled when they do occur, and do not invalidate existing tests. The software recovers well

from failures.

Understandability: “The more information we have, the smarter we will test.” The architectural design and

the dependencies between internal, external, and shared components are well understood. Technical

documentation is instantly accessible, well organized, specific and detailed, and accurate. Changes to the

design are communicated to testers.



White Box Testing

• White box testing is also called as glass-box testing.

• Using white-box testing methods can derive test cases that

– guarantee that all independent paths within a module
have been exercised at least once.

– exercise all logical decisions on their true and false
sides.

– execute all loops at their boundaries and within their
operational bounds.

– exercise internal data structures to ensure their validity.



Basis Path 
Testing

• Basis path testing is a white-box testing 

technique. 

• The basis path method enables the test-case 

designer to derive a logical complexity measure 

of a procedural design and use this measure as a 

guide for defining a basis set of execution paths. 

• Flow Graph Notation: a simple notation for the 

representation of control flow, called a flow 

graph. It also know as program graph.



• Arrows called edges or links represent flow of control.

• Circles called floe graph nodes represent one or more actions.

• Areas bounded by edges and nodes called regions.

• A predicate node is a node containing a condition.



• Independent program paths:

– An independent path is any path through the program that introduces at least one new set of
processing statements or a new condition.

– independent path must move along at least one edge that has not been traversed before the path is
defined.

An independent path is any path through the program that introduces at least one new set of processing
statements or a new condition.

– independent path must move along at least one edge that has not been traversed before the path is
defined.

– Example:



• Deriving test cases:

– Using the design or code as a foundation, draw a corresponding flow graph.

– Determine the cyclomatic complexity of the resultant flow graph. – Determine a basis set of linearly
independent paths.

– Prepare test cases that will force execution of each path in the basis set.

• Graph matrices:

– A data structure, called a graph matrix, can be quite useful for developing a software tool that assists
in basis path testing.

– A graph matrix is a square matrix whose size (i.e., number of rows and columns) is equal to the
number of nodes on the flow graph.



Control Structure Testing

• Condition Testing:

A test case design method that exercises the logical conditions contained in a program module.

• Data Flow Testing:

Selects test paths of a program according to the locations of definitions and uses of variables in the
program.

• Loop Testing:



Techniques for Black Box 
Testing

Sameera Abu Ghalyoun

PPU



What is Black Box Testing?

Black box testing refers to a software testing method where 
the SUT (Software Under Test) functionality is tested without 
worrying about its details of implementation, internal path 
knowledge and internal code structure of the software



Techniques of Black Box Testing



Equivalence Partitioning

• This technique is also known as Equivalence Class Partitioning (ECP).

• In this technique, input values to the system or application are divided into 
different classes or groups based on its similarity in the outcome.

• Hence, instead of using each and every input value we can now use any one 
value from the group/class to test the outcome. In this way, we can 
maintain the test coverage while we can reduce a lot of rework and most 
importantly the time spent.



Boundary Value Analysis (BVA)

• BVA helps in testing any software having a boundary or 
extreme values.

• BVA is capable of identifying the flaws of the limits of 
the input values rather than focusing on the range of 
input value.

• BVA deals with the edge or extreme output values.



State Transition Testing

• This technique usually considers the state, outputs and inputs of 
a system during a specific period.

• It checks for the behavioural changes of a system in a particular 
state or another state while maintaining the same inputs.

• The test cases for this Black box testing technique are created by 
checking the sequence of transitions and state or events among 
the inputs.



Graph-Based Testing

• Graph based testing involves a graph drawing that depicts the 
link between the causes (inputs) and the effects (output), which 
trigger the effects.

• This testing utilizes different combinations of output and inputs.

• It is a helpful techniques to understand the software’s functional 
performance, as it visualizes the flow of inputs and outputs in a 
lively fashion. 



Error Guessing Technique
• This is a classic example of experience based testing.

• In this technique, the tester can use his/her experience about the application 
behaviour and functionalities to guess the error-prone areas. Many defects can be 
found using error guessing where most of the developers usually make mistakes.

• Few common mistakes that developers usually forget to handle:

o Divide by zero.

o Handling null values in text fields.

o Accepting Submit button without any value.

o File upload without attachment.

o File upload with less than or more than the limit size.



Comparison Testing

Different independent versions of same software are used to 
compare to each other for testing in this method.



THANK YOU


	Slide 1: TESTING STRATEGIES
	Slide 2: INDEX
	Slide 3: Strategic Approach to Software Testing
	Slide 4: Verification and Validation
	Slide 5: Organizing for Software Testing
	Slide 6: Testing Strategy
	Slide 7: Criteria for Completion of Testing
	Slide 8: Strategic Issues
	Slide 9: Test Strategies for Conventional Software
	Slide 10: Unit Testing
	Slide 11: Unit testing considerations 
	Slide 12: Unit test procedures
	Slide 13: Unit Test Environment
	Slide 14: Integration testing
	Slide 15: Non-incremental Integration Testing
	Slide 16: Incremental Integration Testing
	Slide 17: Top-down Integration
	Slide 18
	Slide 19: Bottom-up Integration
	Slide 20
	Slide 21: Regression Testing
	Slide 22: Smoke testing
	Slide 23: Test Strategies for Object-Oriented Software
	Slide 24: Test Strategies for Object-Oriented Software
	Slide 25: Test Strategies for Web Apps
	Slide 26
	Slide 27: Validation Testing
	Slide 28
	Slide 29: System Testing
	Slide 30: System Testing
	Slide 31: The Art of Debugging
	Slide 32
	Slide 33: Software Testing Fundamentals
	Slide 34: Software Testing Fundamentals
	Slide 35
	Slide 36: White Box Testing
	Slide 37: Basis Path Testing
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Control Structure Testing
	Slide 42: Techniques for Black Box Testing
	Slide 43: What is Black Box Testing?
	Slide 44: Techniques of Black Box Testing
	Slide 45: Equivalence Partitioning
	Slide 46: Boundary Value Analysis (BVA)
	Slide 47: State Transition Testing 
	Slide 48: Graph-Based Testing
	Slide 49: Error Guessing Technique 
	Slide 50: Comparison Testing
	Slide 51

