Renewable Energy Systems (12210588) Fall 2014

8. Tutorial 1 **Solar System Orientation**

Fathi Anayah, PhD

Lecture 8

Question 1

Compute the tilt angle β and a_s of the collector in order to receive the maximum solar radiation in Tulkarm on 2/3/2005 at local time 14.00.

In order to receive the maximum solar radiation, the projection of the normal of the plane must be in the true south. For the collector, i must be zero°

$$\alpha + i + \beta = 90^{\circ}$$
 \Rightarrow $\alpha + \beta = 90^{\circ}$

$$\delta = 23.45^{\circ} \sin \left[\frac{360(284 + 61)}{365} \right] = -7.91^{\circ}$$

$$t_{s} = LMT + EOT + 4'(LTD - LOD)$$

$$Assume EOT = -12'$$

$$t_{s} = 14 + (-12') + 4'(-32^{\circ} - (-35^{\circ}))$$

$$t_{s} = 14 - 12' + 12' = 14 \frac{0}{60} = 14.0$$

$$H_{s} = \frac{360^{\circ}}{24hours} (t_{s} - 12) = 15^{\circ} (14.0 - 12) = 30.0^{\circ}$$
+ve H_s means PM

 $\sin \alpha = \sin \phi \sin \delta + \cos \phi \cos \delta \cos H_{S}$ $\sin \alpha = \sin(32^{\circ})\sin(-7.91^{\circ}) + \cos(32^{\circ})\cos(-7.91^{\circ})\cos(30.5^{\circ})$ $\alpha = 40^{\circ} \Rightarrow \beta = 90^{\circ} - \alpha = 90^{\circ} - 40^{\circ} = 50^{\circ}$ $\sin a_{s} = -\frac{\sin H_{s} \cos \delta}{\cos \alpha} = \frac{\sin(30.0^{\circ})\cos(-7.91^{\circ})}{\cos(40^{\circ})}$ $\sin a_{s} = -0.65 \Rightarrow a_{s} = -41^{\circ}$

where a_s = +ve when sun is in the east of south

a_s= -ve when sun is in the west of south

2

The conclusion here is to tilt the collector by β = 50° from the plane and orient the collector to the angle of a_s = 41° to the west of the south.

Normal to the tilted plane

5

Question 2

Compute the tilt angle $\,\alpha$, $\,a_s$, $\,\theta$ and i of a solar water heater in Tulkarm on 23/9/2013 at local time 11:20. The solar system is tilted 45° from plane.

$$A - i + \beta = 90^{\circ}$$
$$\alpha + \theta = 90^{\circ}$$

6

$$\delta = 23.45^{\circ} \sin \left[\frac{360(284 + 266)}{365} \right] = -1^{\circ}$$

$$t_{s} = LMT + EOT + 4'(LTD - LOD)$$

$$Assume \ EOT = 7'$$

$$t_{s} = 11: 20 + (7') + 4'(-30^{\circ} - (-35^{\circ}))$$

$$t_{s} = 11: 20 + 7' + 20' = 11\frac{47}{60} = 11.78hour$$

$$H_{s} = \frac{360^{\circ}}{24hours} (t_{s} - 12) = 15^{\circ}(11.78 - 12) = -3.25^{\circ}$$
-ve H_s means AM

$$\sin \alpha = \sin \phi \sin \delta + \cos \phi \cos \delta \cos H_{S}$$

$$\sin \alpha = \sin(30^{\circ}) \sin(-1^{\circ}) + \cos(30^{\circ}) \cos(-1^{\circ}) \cos(-3.25^{\circ})$$

$$\alpha = 57^{\circ}$$

$$\sin a_{s} = -\frac{\sin H_{s} \cos \delta}{\cos \alpha} = \frac{\sin(-3.25^{\circ}) \cos(-1^{\circ})}{\cos(57^{\circ})}$$

$$\sin a_{s} = 0.1 \Rightarrow a_{s} = 6^{\circ} \text{ (east of south)}$$

$$\theta = 90^{\circ} - 57^{\circ} = 33^{\circ}$$

$$\alpha + \beta - i = 90^{\circ} \Rightarrow i = 12^{\circ}$$

4