
24
Gauss’s Law

CHAPTER OUTLINE

24.1 Electric Flux
24.2 Gauss’s Law
24.3 Application of Gauss’s Law to 

Various Charge Distributions
24.4 Conductors in Electrostatic 

Equilibrium

ANSWERS TO QUESTIONS

Q24.1 The net fl ux through any gaussian surface is zero. We 
can argue it two ways. Any surface contains zero charge, 
so Gauss’s law says the total fl ux is zero. The fi eld is 
uniform, so the fi eld lines entering one side of the closed 
surface come out the other side and the net fl ux is zero.

*Q24.2  (i)  Equal amounts of fl ux pass through each of the six 
faces of the cube.  Answer (e).

 (ii)  Move the charge to very close below the center of one 
face, through which the fl ux is then q/2∈

0
. Answer (c).

 (iii)  Move the charge onto one of the cube faces. Then the 
fi eld has no component perpendicular to this face and 
the fl ux is zero.  Answer (a).

Q24.3 The luminous fl ux on a given area is less when the sun is low in the sky, because the angle 
between the rays of the sun and the local area vector, d

�
A , is greater than zero. The cosine of this 

angle is reduced. The decreased fl ux results, on the average, in colder weather.

Q24.4 The surface must enclose a positive total charge.

*Q24.5 (i)  Both spheres create equal fi elds at exterior points, like particles at the centers of the spheres. 
Answer (c).

 (ii)  The fi eld within the conductor is zero. The fi eld within the insulator is 4/5 of its surface value.  
Answer (f).

Q24.6 Gauss’s law cannot tell the different values of the electric fi eld at different points on the surface. 

When E is an unknown number, then we can say E dA E dAcos cosθ θ∫ ∫= . When E x y z, ,( )  

is an unknown function, then there is no such simplifi cation.

Q24.7 The electric fl ux through a sphere around a point charge is independent of the size of the sphere. 
A sphere of larger radius has a larger area, but a smaller fi eld at its surface, so that the product 
of fi eld strength and area is independent of radius. If the surface is not spherical, some parts are 
closer to the charge than others. In this case as well, smaller projected areas go with stronger 
fi elds, so that the net fl ux is unaffected.

*Q24.8 The outer wall of the conducting shell will become polarized to cancel out the external fi eld. The 
interior fi eld is the same as before.  Answer (c).
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28 Chapter 24 

*Q24.9 (a)  Let q represent the charge of the insulating sphere. The fi eld at A is (4/5)3q/[4p (4 cm)2∈
0
]. 

The fi eld at B is q/[4p (8 cm)2∈
0
]. The fi eld at C is zero. The fi eld at D is q/[4p (16 cm)2∈

0
]. 

The ranking is A > B > D > C.

 (b)  The fl ux through the 4-cm sphere is (4/5)3q/∈
0
. The fl ux through the 8-cm sphere and 

through the 16-cm sphere is q/∈
0
. The fl ux through the 12-cm sphere is 0. The ranking is 

B = D > A > C.

Q24.10 Inject some charge at arbitrary places within a conducting object. Every bit of the charge repels 
every other bit, so each bit runs away as far as it can, stopping only when it reaches the outer 
surface of the conductor.

Q24.11 If the person is uncharged, the electric fi eld inside the sphere is zero. The interior wall of the shell 
carries no charge. The person is not harmed by touching this wall. If the person carries a (small) 
charge q, the electric fi eld inside the sphere is no longer zero. Charge –q is induced on the inner 
wall of the sphere. The person will get a (small) shock when touching the sphere, as all the charge 
on his body jumps to the metal.

*Q24.12 (i) The shell becomes polarized.  Answer (e).
 (ii) The net charge on the shell’s inner and outer surfaces is zero. Answer (a).
 (iii) Answer (c).
 (iv) Answer (c).
 (v) Answer (a).

SOLUTIONS TO PROBLEMS

Section 24.1 Electric Flux

P24.1 (a) ΦE a b A aA= ⋅ = +( ) ⋅ =
� �
E A i j iˆ ˆ ˆ

 (b) ΦE a b A bA= +( ) ⋅ =ˆ ˆ ˆi j j

 (c) ΦE a b A= +( ) ⋅ =ˆ ˆ ˆi j k 0

P24.2 ΦE EA= = ×( )( ) =cos . . cos .θ 2 00 10 18 0 10 0 3554 N C m °2 kN m C2⋅

P24.3 ΦE EA= cosθ  A r= = ( ) =π π2 20 200 0 126. . m2

 5 20 10 0 126 05. . cos× = ( )E °   E = × =4 14 10 4 146. .N C MN C

P24.4 (a) ′ = ( )( )A 10 0 30 0. .cm cm

  

′ = =
= ′

=
′

′

A

EAE A

E A

300 0 030 0

7 80

 cm  m2 2.

cos

.

,

,

Φ

Φ

θ

××( )( )
= − ⋅′

10 0 030 0 180

2 34

4 . cos

.,

°

 kN m C2ΦE A

FIG. P24.4

continued on next page
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 Gauss’s Law 29

 (b) ΦE A EA A, cos . cos .= = ×( )( )θ 7 80 10 60 04 °

  

A w= ( )( ) = ( )⎛
⎝⎜

⎞30 0 30 0
10 0

60 0
. .

.

cos .
 cm  cm

 cm

°⎠⎠⎟ = =

= ×( )(

600 0 060 0

7 80 10 0 060 04

 cm  m2 2.

. .,ΦE A )) = + ⋅cos . .60 0 2 34°  kN m C2

 (c)  The bottom and the two triangular sides all lie parallel to 
�
E, so ΦE = 0  for each of these. 

Thus,

  ΦE , . .total
2 2 kN m C  kN m C= − ⋅ + ⋅ + + + =2 34 2 34 0 0 0 0

P24.5 ΦE EA= cosθ through the base

 ΦE = ( )( ) = − ⋅52 0 36 0 180 1 87. . cos .° kN m C2

 Note that the same number of electric fi eld lines go through the base as go 
through the pyramid’s surface (not counting the base).

 For the slanting surfaces, ΦE = + ⋅1 87. kN m C2 .

Section 24.2 Gauss’s Law

P24.6 (a) One-half of the total fl ux created by the charge q goes through the plane. Thus,

  Φ ΦE E

q q
, ,plane total= =

∈
⎛
⎝⎜

⎞
⎠⎟

=
∈

1

2

1

2 20 0

 (b) The square looks like an infi nite plane to a charge very close to the surface. Hence,

  Φ ΦE E

q
, ,square plane≈ =

∈2 0

 (c) The plane and the square look the same to thhe charge.

P24.7 (a) ΦE

q=
∈

=
+ − + −( )in  C  C  C  C

0

5 00 9 00 27 0 84 0. . . .µ µ µ µ
88 85 10

6 89 1012
6

.
.

× ⋅
= − × ⋅−  C N m

N m C2 2
2 2

  ΦE = − ⋅6 89. MN m C2

 (b) Since the net electric fl ux is negative, more lines enter than leave the surface.

P24.8 (a) E
k Q

r
e= 2 ; 8 90 10

8 99 10

0 750
2

9

2.
.

.
× =

×( )
( )

Q

  But Q is negative since
�
E points inward.  Q = − × = −−5 57 10 55 78. .C nC

 (b)  The negative charge has a spherically symmetric  charge distribution, concentric with 

  the spherical shell.

FIG. P24.5
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30 Chapter 24 

P24.9 ΦE

q=
∈

in

0

 Through S1     ΦE

Q Q Q= − +
∈

= −
∈

2

0 0

 Through S2     ΦE

Q Q= + −
∈

=
0

0

 Through S3     ΦE

Q Q Q Q= − + −
∈

= −
∈

2 2

0 0

 Through S4     ΦE = 0

P24.10 (a) ΦE

q
,

.

.
.  shell

in=
∈

= ×
×

= ×
−

−
0

6

12

12 0 10

8 85 10
1 36 100 1 366 N m C MN m C2 2⋅ = ⋅.

 (b) ΦE ,half shell
2N m C N m= × ⋅( ) = × ⋅1

2
1 36 10 6 78 106 5. . 22 2C kN m C= ⋅678

 (c)  No ,
 
the same number of fi eld lines will pass through each surface, no matter how the 

radius changes.

P24.11 The total charge is Q q− 6 . The total outward fl ux from the cube is Q q−
∈

6

0

, of which 

 one-sixth goes through each face:

 ΦE

Q q( ) =
−
∈one face

6

6 0

 .
ΦE

Q q( ) =
−
∈

= −( ) × ⋅ ⋅−

one face

C N m6

6

5 00 6 00 10

0

6. . 22
2

C
kN m C

6 8 85 10
18 812 2× ×

= − ⋅−.
.

P24.12 The total charge is Q q− 6 . The total outward fl ux from the cube is Q q−
∈

6

0

, of which 
one-sixth goes through each face:

 ΦE

Q q( ) =
−
∈one face

6

6 0

P24.13 (a)  With d  very small, all points on the hemisphere are 
nearly at a distance R from the charge, so the fi eld 

  everywhere on the curved surface is k Q

R
e

2
 radially 

  outward (normal to the surface). Therefore, the fl ux 
 is this fi eld strength times the area of half a sphere:

  

Φ

Φ

curved local hemisphere

curved

= ⋅ =

=

∫
� �
E Ad E A

ke

QQ

R
R Q

Q
2

2

0 0

1

2
4

1

4
2

2
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ =

∈
( ) = +

∈
π

π
π

 (b) The closed surface encloses zero charge so Gauss’s law gives

  Φ Φcurved flat+ = 0   or  Φ Φflat curved= − = −
∈
Q

2 0

Q
δ → 0

FIG. P24.13
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 Gauss’s Law 31

P24.14 Consider as a gaussian surface a box with horizontal area A, lying between 500 and 600 m elevation.

 
� �

� E A⋅ =
∈∫ d
q

0

:  +( ) + −( ) = ( )
∈

120 100
100

0

N C N C
m

A A
Aρ

   ρ =
( ) × ⋅( )

= ×
−

−20 8 85 10

100
1 77 10

12
12N C C N m

m
C

2 2.
. mm3

 The charge is positive , to produce the net outward fl ux of electric fi eld.

P24.15 If R d≤ ,, the sphere encloses no charge and ΦE

q=
∈

=in

0

0 .

 If R d> , the length of line falling within the sphere is 2 2 2R d−

 so ΦE

R d= −
∈

2 2 2

0

λ

P24.16 ΦE
ek Q

R
r,

.
hole hole

N
= ⋅ = ⎛

⎝
⎞
⎠ ( ) =

×� �
E A 2

2
98 99 10

π
⋅⋅( ) ×( )

( )
⎛

⎝
⎜

⎞

⎠
⎟ ×

−m C C

m

2 2 10 0 10

0 100
1 00

6

2

.

.
.π 110 3 2−( )m

 ΦE , .hole
2N m C= ⋅28 2

P24.17 ΦE

q=
∈

= ×
× ⋅

= ×
−

−
in

2 2

C

8.85 10 C N m0

6

12

170 10
1 92 1. 007 N m /C2⋅

 (a) Φ ΦE E( ) = = × ⋅
one face

2N m C1

6

1 92 10

6

7.  ΦE( ) = ⋅
one face

2MN m C3 20.

 (b) ΦE = ⋅19 2. MN m C2

 (c) The answer to (a) would change because the fflux through each face of the cube would

nott be equal with an asymmetric charge distriibution. The sides of the cube nearer the

chharge would have more flux and the ones furrther away would have less. The answer

to (bb) would remain the same, since the overalll flux would remain the same.

Section 24.3 Application of Gauss’s Law to Various Charge Distributions

P24.18 (a) E
k Qr

a
e= =3 0

 (b) E
k Qr

a
e= =

×( ) ×( )( )
(

−

3

9 68 99 10 26 0 10 0 100

0 400

. . .

. )) =3 365 kN C

 (c) E
k Q

r
e= =

×( ) ×( )
( ) =

−

2

9 6

2

8 99 10 26 0 10

0 400
1 46

. .

.
. MNN C

 (d) E
k Q

r
e= =

×( ) ×( )
( ) =

−

2

9 6

2

8 99 10 26 0 10

0 600
649

. .

.
kN CC

  The direction for each electric fi eld is radially outward .
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P24.19 The charge distributed through the nucleus creates a fi eld at the surface equal to that of a point 

 charge at its center: E
k q

r
e= 2 .

  E =
×( ) × ×( )

( )

−8 99 10 82 1 60 10

208 1

9 19

1 3

. .

.

Nm C C2 2

220 10 15 2
×⎡⎣ ⎤⎦

− m

  E = ×2 33 1021. N C away from the nucleus

P24.20 Note that the electric fi eld in each case is directed radially inward, toward the fi lament.

 (a) E
k

r
e= =

× ⋅( ) ×( )−
2 2 8 99 10 90 0 10

0 100

9 6λ . .

.

N m C C m2 2

  m
MN C= 16 2.

 (b) E
k

r
e= =

× ⋅( ) ×( )−
2 2 8 99 10 90 0 10

0 200

9 6λ . .

.

N m C C m2 2

  m
MN C= 8 09.

 (c) E
k

r
e= =

× ⋅( ) ×( )−
2 2 8 99 10 90 0 10

1 00

9 6λ . .

.

N m C C m

 

2 2

mm
MN C= 1 62.

P24.21 E =
∈

= ×
× ⋅( ) =

−

−

σ
2

9 00 10

2 8 85 10
508

0

6

12

.

.

C m

C N m
k

2

2 2
NN C, upward

*P24.22 (a)  A long cylindrical plastic rod 2.00 cm in radius carries charge uniformly distributed 
throughout its volume, with density 5.00 µC/m3. Find the magnitude of the electric fi eld 
it creates at a point P, 3.00 cm from its axis. As a gaussian surface choose a concentric 
cylinder with its curved surface passing through the point P and with length 8.00 cm. 

 (b) We solve for 

  E = ×
×

−

−

( . . )

( .

0 02 0 08

8 85 10 12

m) m (5 10 C/m

C

2 6 3

22 2/N m m) 0.08 m
kN/C

⋅
=

) ( .
.

2 0 03
3 77  

P24.23 If r is positive, the fi eld must be radially outward. Choose as the 
gaussian surface a cylinder of length L and radius r, contained 
inside the charged rod. Its volume is πr L2  and it encloses 
charge ρπr L2 .  Because the charge distribution is long, no electric 
fl ux passes through the circular end caps; 

� �
E A⋅ = =d EdA cos .90 0 0° . 

The curved surface has 
� �
E A⋅ =d EdA cos0°, and E must be the same 

strength everywhere over the curved surface.

 Gauss’s law, 
� �

� E A⋅ =
∈∫ d
q

0

,   becomes  E dA
r L

Curved
Surface

∫ =
∈

ρπ 2

0

.

 Now the lateral surface area of the cylinder is 2πrL :

 E r L
r L

2
2

0

π ρπ( ) =
∈

  Thus,  
�
E =

∈
ρr

2 0

 radially away from the cylinder axiis .

*P24.24 s = ×( )⎛
⎝⎜

⎞
⎠⎟ = ×− −8 60 10

100
8 60 106

2
2. .C cm

 cm

m
C m2 22

 E =
∈

= ×
×( ) = ×

−

−

σ
2

8 60 10

2 8 85 10
4 86 10

0

2

12
9.

.
. N C  awaay from the wall

 

So long as the distance from the wall is small compared to the width and height of the wall, the 
distance does not affect the fi eld.

FIG. P24.23
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 Gauss’s Law 33

P24.25 The volume of the spherical shell is

 4

3
0 25 0 20 3 19 103 3 2π . . .m m m3( ) − ( )⎡⎣ ⎤⎦ = × −

 Its charge is

 ρV = − ×( ) ×( ) = − ×− − −1 33 10 3 19 10 4 25 106 2 8. . .C m m3 3 C

 The net charge inside a sphere containing the proton’s path as its equator is

 − × − × = − ×− − −60 10 4 25 10 1 02 109 8 7C C C. .

 The electric fi eld is radially inward with magnitude

 
k q

r

q

r
e

2
0

2

9 7

24

8 99 10 10

0 25
=

∈
=

× ×( )−

π
.

.

Nm 1.02 C

C

2

mm
N C

( )
= ×2

41 47 10.

 For the proton

 F ma∑ =     eE
m

r
= v2

 v = ⎛
⎝

⎞
⎠ =

× ×( )−
eEr

m

1 2 19 41 60 10 1 47 10 0 25. . .C N C m

11.67 kg
m s

×
⎛

⎝
⎜

⎞

⎠
⎟ = ×−10

5 94 1027

1 2

5.

P24.26 The distance between centers is 2 × 5.90 × 10−15 m. Each produces a fi eld as if it were a point 
charge at its center, and each feels a force as if all its charge were a point at its center.

 F
k q q

r
e= = × ⋅( ) ( ) × −

1 2
2

9

2 19

8 99 10
46 1 60 10

.
.

N m C2 2 CC

m
N kN

( )
× ×( ) = × =

−

2

15 2
3

2 5 90 10
3 50 10 3 50

.
. .

P24.27 (a) 
�
E = 0

 (b) E
k Q

r
e= =

×( ) ×( )
( ) =

−

2

9 6

2

8 99 10 32 0 10

0 200
7 19

. .

.
. MMN C  

�
E = 7 19. MN C radially outward

P24.28 Consider two balloons of diameter 0.2 m, each with mass 1 g, 
hanging apart with a 0.05 m separation on the ends of strings 
making angles of 10° with the vertical.

 (a) F T mg T
mg

y∑ = − = ⇒ =cos
cos

10 0
10

°
°

  F T F F Tx e e∑ = − = ⇒ =sin sin10 0 10° °, so

  

F
mg

mge = ⎛
⎝

⎞
⎠ = = ( )

cos
sin tan . .

10
10 10 0 001 9

°
° ° kg 88 10

2 10 3 3

m s °

N ~10 N or 1 mN

2( )
≈ × − −

tan

Fe

FIG. P24.28

continued on next page
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 (b) F
k q

re
e=

2

2

  
2 10

8 99 10

0 25

1 2 1

3
9 2

2× ≈
× ⋅( )

( )
≈ ×

− N
N m C

m

2 2.

.

.

q

q 00 107 7− −C ~ C or 100 nC

 (c) E
k q

r
e= ≈

× ⋅( ) ×( )
(

−

2

9 78 99 10 1 2 10

0 25

. .

.

N m C  C

 m

2 2

))
≈ ×2

41 7 10 10. ~N C kN C

 (d) ΦE

q=
∈

≈ ×
× ⋅

= ×
−

−
0

7

12
41 2 10

1 4 10
.

.
 C

8.85 10  C N m
N2 2 ⋅⋅ ⋅m C kN m C2 2~10

P24.29 (a) E
k

r
e= =

× ⋅( ) ×( )−
2 2 8 99 10 2 00 10 7 009 6λ . . .N m C C2 2 mm

m

⎡⎣ ⎤⎦
0 100.

  E = 51 4. ,kN C radially outward

 (b) ΦE EA E r= = ( )cos cosθ π2 0� °

  ΦE = ×( ) ( )( )( ) =5 14 10 2 0 100 0 020 0 1 004. . . .N C m mπ 6646 N m C2⋅

Section 24.4 Conductors in Electrostatic Equilibrium

P24.30 The fi elds are equal. The equation E =
∈

σ conductor

0

suggested in the chapter for the fi eld outside the

 aluminum looks different from the equation E =
∈

σ insulator

2 0

for the fi eld around glass. But its charge

 will spread out to cover both sides of the aluminum plate, so the density is
 
σ conductor .= Q

A2

 The glass carries charge only on area A, with σ insulator = Q

A
. The two fi elds are 

Q

A2 0∈
, the same

 in magnitude, and both are perpendicular to the plates, vertically upward if Q is positive.

P24.31 EdA E rl
q

�∫ = ( ) =
∈

2
0

π in  E
q l

r r
=

∈
=

∈
in

2 20 0π
λ

π

 (a) r = 3 00. cm  
�
E = 0

 (b) r = 10 0. cm  
�
E = ×

×( )( )
=

−

−

30 0 10

2 8 85 10 0 100
5 400

9

12

.

. .π
N C, ooutward

 (c) r = 100 cm                    
�
E = ×

×( )( )
=

−

−

30 0 10

2 8 85 10 1 00
540

9

12

.

. .π
N C, outtward
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 Gauss’s Law 35

*P24.32 (a) All of the charge sits on the surface of the copper sphere at radius 15 cm. The fi eld inside 
 is zero .

 (b) The charged sphere creates fi eld at exterior points as if it were a point charge at the center:

           
�
E = =

×( ) ×( )−
k q

r
e
2

9 98 99 10 40 10

0
away

N·m C

C

2

2

.

..
.

17
1 24 102

4

m
outward N C outward

( ) = ×

 (c) 
�
E =

×( ) ×( )
( )

−8 99 10 40 10

0 75

9 9

2

.

.

N·m C

C m
ou

2

2 ttward N C outward= 639

 (d)  All three answers would be the same. The solid copper sphere carries charge only on its 
outer surface.

P24.33 The charge divides equally between the identical spheres, with charge 
Q

2
 on each. Then they 

repel like point charges at their centers:

 F
k Q Q

L R R

k Q

L R
e e=
( )( )

+ +( ) =
+( ) =

×2 2

4 2

8 99 10
2

2

2

9. NN m C

C m
N

2

2

⋅ ×( )
( ) =

−60 0 10

4 2 01
2 00

6 2

2

.

.
.

*P24.34 Let the fl at box have face area A perpendicular to its thickness dx. The fl ux at x = 0.3 m is into the 
box   −EA = −(6 000 N/C ⋅ m2)(0.3 m)2 A = −(540 N/C) A.

 The fl ux out of the box at x = 0.3 m + dx

 +EA = −(6 000 N/C ⋅ m2)(0.3 m + dx)2 A = +(540 N/C) A + (3 600 N/C ⋅ m) dx A

 (The term in (dx)2 is negligible.)

 The charge in the box is rA dx where r is the unknown. Gauss’s law is

 −(540 N/C) A + (540 N/C) A + (3 600 N/C ⋅ m) dx A = rA dx/∈
0

 Then r = (3600 N/C ⋅ m)∈
0
 = (3600 N/C ⋅ m)(8.85 × 10−12 C2/N ⋅ m2) = 31.9 nC/m3

P24.35 (a)  Inside surface: consider a cylindrical surface within the metal. Since E inside the 
conducting shell is zero, the total charge inside the gaussian surface must be zero, so the 
inside charge/length = −λ.

  0 = +λ� qin  so  
qin

�
= −λ

  Outside surface:  The total charge on the metal cylinder is    2λ� = +q qin out

  qout = +2λ λ� �   so the outside charge/length is 3λ

 (b) E
k

r

k

r r
e e=
( ) = =

∈
2 3 6 3

2 0

λ λ λ
π

radially outward

*P24.36  The surface area is A = 4pa2. The fi eld is then 

 E
k Q

a

Q

a

Q

A
e= =

∈
=

∈
=

∈2
0

2
0 04π

σ

 It is not equal to s /2∈
0
. At a point just outside, the uniformly charged surface looks just like a 

uniform fl at sheet of charge. The distance to the fi eld point is negligible compared to the radius 
of curvature of the surface.

85646_24_ch24_p027-046.indd   3585646_24_ch24_p027-046.indd   35 8/31/07   7:57:35 PM8/31/07   7:57:35 PM



36 Chapter 24 

P24.37 (a) The charge density on each of the surfaces (upper and lower) of the plate is:

  

σ = ⎛
⎝

⎞
⎠ =

×( )
( ) = ×

−
1

2

1

2

4 00 10

0 500
8 00 1

8

2

q

A

.

.
.

C

m
00 80 08− =C m nC m2 2.

 (b) 
�
E k=

∈
⎛
⎝⎜

⎞
⎠⎟

= ×
× ⋅

−

−

σ
0

8

12

8 00 10

8 85 10
ˆ .

.

 C m

 C N

2

2 mm
 kN C2

⎛
⎝⎜

⎞
⎠⎟

= ( )ˆ . ˆk k9 04

 (c) 
�
E k= −( )9 04. ˆkN C

 

Additional Problems

P24.38 In general, 
�
E i j k= + +ay cxˆ ˆ ˆbz

 In the xy plane, z = 0   and  
�
E i k= +ay cxˆ ˆ

 

Φ

Φ

E

E

x

w

d ay cx dA

ch xdx c

= ⋅ = +( ) ⋅

= =

∫ ∫

∫
=

� �
E A i k kˆ ˆ ˆ

0

hh
x chw

x

w2

0

2

2 2=

=

P24.39 (a)  Uniform 
�
E, pointing radially outward, so ΦE EA= . The arc length 

is ds Rd= θ , and the circumference is 2 2π π θr R= sin .

  

A rds R Rd R d

R

= = ( ) =

=

∫ ∫∫ 2 2 2

2

0

2

0

2

π π θ θ π θ θ

π

θ θ

sin sin

−−( ) = −( )cos cosθ π θθ
0

22 1R

  ΦE

Q

R
R

Q=
∈

⋅ −( ) =
∈

−( )1

4
2 1

2
1

0
2

2

0π
π θ θcos cos

 

[independent of R!]

 (b) For θ = 90 0. °  (hemisphere): ΦE

Q Q=
∈

−( ) =
∈2

1 90
20 0

cos ° .

 (c) For θ = 180°  (entire sphere): ΦE

Q Q=
∈

−( ) =
∈2

1 180
0 0

cos °

 

[Gauss’s Law].

P24.40 The sphere with large charge creates a strong fi eld to polarize the other sphere. That means it 
pushes the excess charge over to the far side, leaving charge of the opposite sign on the near side. 
This patch of opposite charge is smaller in amount but located in a stronger external fi eld, so it 
can feel a force of attraction that is larger than the repelling force felt by the larger charge in the 
weaker fi eld on the other side.

x

y

z

x = 0

x = w

y = 0 y = h

dA = hdx

FIG. P24.38

FIG. P24.39
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 Gauss’s Law 37

*P24.41 (a)  The fi eld is zero within the metal of the shell. The exterior electric fi eld lines end at equally 
spaced points on the outer surface. The charge on the outer surface is distributed uniformly. 
Its amount is given by

    EA = Q/∈
0

    Q = −(890 N/C) 4p (0.75 m)2 8.85 × 10−12 C2/N ⋅ m2 = −55.7 nC

 (b) and (c)  For the net charge of the shell to be zero, the shell must carry +55.7 nC on its inner 
surface, induced there by −55.7 nC in the cavity within the shell. The charge in the 
cavity could have any distribution and give any corresponding distribution to the 
charge on the inner surface of the shell. For example, a large positive charge might 
be within the cavity close to its topmost point, and a slightly larger negative charge 
near its easternmost point. The inner surface of the shell would then have plenty 
of negative charge near the top and even more positive charge centered on the 
eastern side.

*P24.42 (a) qin C C C= + − = +3 1 2 00µ µ µ.

 (b) The charge distribution is spherically symmetric and qin > 0. Thus, the fi eld is directed

  radially outward  or to the right at point D.

 (c) E
k q

r
e= = × × =in

62.00 10 N/C
2

9

2

8 99 10

0 16
70

.

( . )

−

22 kN/C

 (d) Since all points within this region are located inside conducting material, E = 0 .

 (e) Φ ΦE Ed q= ⋅ = ⇒ = ∈ =∫
� �
E A 0 00in

 (f ) qin C= +3 00. µ

 (g) E
k q

r
e= = × × =

−
in

6 3.00 10
 MN2

9

2

8 99 10

0 08
4 21

.

( . )
. //C to the right

 
(radially outward).

 (h) q Vin

C
C= = +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝

⎞
⎠ = +ρ µ

π
π µ3

5

4

3
4 1 54

4
3

3
3 .

 (i) E
k q

r
e= = × × =

−
in

6 1.54 10
 MN2

9

2

8 99 10

0 04
8 63

.

( . )
. //C to the right

 
(radially outward) 

 (j)  As in part (d), E = 0  for 10 15cm cm< <r . 
Thus, for a spherical gaussian surface with
10 15 cm  cm,< <r  q qin innerC= + + =3 0µ  
where qinner  is the charge on the inner surface 

of the conducting shell. This yields 

qinner C= −3 00. µ .

 (k) Since the total charge on the conducting 
 shell is q q qnet outer inner C= + = −1 µ , we have

  q qouter innerC C C C= − − = − − −( ) = +1 1 3 2 00µ µ µ µ.

 (l) This is shown in the fi gure to the right.

E

ra b c

FIG. P24.42(l)
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P24.43 (a) 
� �

� E A⋅ = ( ) =
∈∫ d E r
q

4 2

0

π in

  For r a< ,  q rin = ⎛
⎝

⎞
⎠ρ π4

3
3

  so E
r=

∈
ρ

3 0

  For a r b< <  and c r< , q Qin =

  So E
Q

r
=

∈4 2
0π

  For b r c≤ ≤ , E = 0,  since E = 0  inside a conductor.

 (b)  Let q1 =  induced charge on the inner surface of the hollow sphere. Since E = 0  inside the 
conductor, the total charge enclosed by a spherical surface of radius b r c≤ ≤  must be zero.

  Therefore,    q Q1 0+ =   and  σ
π π1

1
2 24 4

= = −q

b

Q

b

   Let q2 =  induced charge on the outside surface of the hollow sphere. Since the hollow 
sphere is uncharged, we require

   q q1 2 0+ =   and  σ
π π2

1
2 24 4

= =q

c

Q

c

P24.44 First, consider the fi eld at distance r R<  from the center of a uniform sphere of positive charge 
Q e= +( )  with radius R.

 4 2

0 0
4
3

3

4
3

3

0

π ρ
π

π
r E

q V e

R

r( ) =
∈

=
∈

= +⎛
⎝⎜

⎞
⎠⎟ ∈

in

  

so  E
e

R
=

∈
⎛
⎝⎜

⎞
⎠⎟4 0

3π
 r directed outward

 (a) The force exerted on a point charge q e= −  located at distance r from the center is then

  F qE e
e

R
r

e

R
r Kr= = −

∈
⎛
⎝⎜

⎞
⎠⎟

= −
∈

⎛
⎝⎜

⎞
⎠⎟

= −
4 40

3

2

0
3π π

 (b) K
e

R

k e

R
e=

∈
=

2

0
3

2

34π

 (c) F m a
k e

R
rr e r

e= = −
⎛

⎝
⎜

⎞

⎠
⎟

2

3
,   so  a

k e

m R
r rr

e

e

= −
⎛
⎝⎜

⎞
⎠⎟

= −
2

3
2ω

  Thus, the motion is simple harmonic with frequency f
k e

m R
e

e

= =ω
π π2

1

2

2

3

 (d)
 

f = × =
× ⋅( ) × −

2 47 10
1

2

8 99 10 1 60 10
15

9 1

.
. .

 Hz
N m C2 2

π

99 2

31 39 11 10

C

 kg

( )
×( )−. R

  which yields R3 301 05 10= × −. , m3     or    R = × =−1 02 10 10210. m pm

FIG. P24.43
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 Gauss’s Law 39

P24.45 The vertical velocity component of the moving charge 
increases according to

 m
d

dt
Fy

y

v
=   m

d

dx

dx

dt
qEy

y

v
=

 Now dx

dt x= v  has the nearly constant value v. So

 d
q

m
E dxy yv

v
=    v v

v

v

y y yd
q

m
E dx

y

= =∫ ∫
−0 �

�

 The radially outward component of the electric fi eld varies along the x axis, but is described by

 
E dA E d dx

Q
y y

− −
∫ ∫= ( ) =

∈
�

�

�

�

2
0

π

 So E dx
Q

dy

−
∫ =

∈
�

�

2 0π
 and v

vy

qQ

m d
=

∈2 0π
. The angle of defl ection is described by

 tanθ
π

= =
∈

v

v v
y qQ

dm2 0
2

 θ
π

=
∈

−tan 1

0
22

qQ

dmv

P24.46 Consider the fi eld due to a single sheet and let E+  and E−  represent 
the fi elds due to the positive and negative sheets. The fi eld at any 
distance from each sheet has a magnitude given by the textbook equation 

 E E+ −= =
∈
σ

2 0

 (a)  To the left of the positive sheet, E+ is directed toward the 
left and E−  toward the right and the net fi eld over this

  region is 
�
E = 0 .

 (b)  In the region between the sheets, E+  and E−  are both directed 
toward the right and the net fi eld is

  
�
E =

∈
σ

0

 to the right

 (c)  To the right of the negative sheet, E+ and E−  are again

  oppositely directed and 
�
E = 0 .

P24.47 The magnitude of the fi eld due to each sheet given by 
Equation 24.8 is

   
E =

∈
σ

2 0  
directed perpendicular to the sheet

 (a)  In the region to the left of the pair of sheets, both fi elds are 
directed toward the left and the net fi eld is

   

�
E =

∈
σ

0

 to the left

FIG. P24.45

vx

vy

x

y

dq

v
0

Q

FIG. P24.46

FIG. P24.47

continued on next page
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40 Chapter 24 

 (b)  In the region between the sheets, the fi elds due to the individual sheets are oppositely 
directed and the net fi eld is

   

�
E = 0

 (c)  In the region to the right of the pair of sheets, both fi elds are directed toward the right and 
the net fi eld is

   

�
E =

∈
σ

0

 to the right

P24.48 The electric fi eld throughout the region is directed along x; therefore, �
E will be perpendicular to dA over the four faces of the surface which are 
perpendicular to the yz plane, and E will be parallel to dA over the two faces 
which are parallel to the yz plane. Therefore,

 
ΦE x x a x x a c

E A E A a ab a c= −( ) + ( ) = − +( ) + + +( )
= = +

3 2 3 22 22

2 2

( )
= +( )

ab

abc a c

 Substituting the given values for a, b, and c, we fi nd ΦE = ⋅0 269.  N m C2 .

 Q E= ∈ = × =−
0

122 38 10 2 38Φ . . C  pC

P24.49 
� �

� E A⋅ = ( ) =
∈∫ d E r
q

4 2

0

π in

 (a) For r R> ,    q Ar r dr
ARR

in = ( ) =∫ 2 2

0

5

4 4
5

π π

   and    E
AR

r
=

∈

5

0
25

 (b) For r R< ,    q Ar r dr
Arr

in = ( ) =∫ 2 2

0

5

4
4

5
π π

   and    E
Ar=
∈

3

05

FIG. P24.48
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 Gauss’s Law 41

P24.50 The resultant fi eld within the cavity is the superposition of 
two fi elds, one 

�
E+ due to a uniform sphere of positive charge 

of radius 2a, and the other 
�
E− due to a sphere of negative 

charge of radius a centered within the cavity.

 

4

3
4

3

0

2π ρ πr
r E

∈
⎛
⎝⎜

⎞
⎠⎟

= +
 so 

� �
E r

r
+ =

∈
=

∈
ρ ρr

3 30 0

ˆ

 −
∈

⎛
⎝⎜

⎞
⎠⎟

= −
4

3
41

3

0
1
2π ρ πr

r E    so   
� �
E r r− =

∈
−( ) = −

∈
ρ ρr1

0
1

0
13 3

ˆ

 Since 
� � �
r a r= + 1,   

� � �
E

r a
− =

− −( )
∈

ρ
3 0

   

� � � � � � �
E E E

r r a a
i= + =

∈
−

∈
+

∈
=

∈
= ++ −

ρ ρ ρ ρ
3 3 3 3

0
0 0 0 0

ˆ ρρ a

3 0∈
ĵ

 Thus,  Ex = 0

 and  E
a

y =
∈

ρ
3 0

at all points within the cavity

P24.51 Consider the charge distribution to be an unbroken charged spherical shell with uniform charge 
density s and a circular disk with charge per area −σ .  The total fi eld is that due to the whole 

sphere, 
Q

R

R

R4

4

40
2

2

0
2

0π
π

π∈
=

∈
=

∈
σ σ

outward plus the fi eld of the disk −
∈

=
∈

σ σ
2 20 0

 radially 

inward. The total fi eld is
σ σ σ
∈

−
∈

=
∈0 0 02 2

 outward .

P24.52 In this case the charge density is not uniform, and Gauss’s law is written as
� �

� E A⋅ =
∈∫ ∫d dV
1

0

ρ . 

We use a gaussian surface which is a cylinder of radius r, length � , and is coaxial with the charge 
distribution.

 (a)  When r R< , this becomes E r a
r

b
dV

r

2 0

0 0

π ρ
�( ) =

∈
−⎛

⎝
⎞
⎠∫ .  The element of volume is a 

cylindrical shell of radius r, length �, and thickness dr so that dV r dr= 2π � .

  E r
r a r

b
2

2

2 3

2
0

0

π π ρ
�

�( ) =
∈

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

 

so inside the cylinder, E
r

a
r

b
=

∈
−⎛

⎝⎜
⎞
⎠⎟

ρ0

02

2

3

 (b) When r R> , Gauss’s law becomes

  E r a
r

b
r dr

R

2 20

0 0

π ρ π� �( ) =
∈

−⎛
⎝⎜

⎞
⎠⎟ ( )∫ or outside the cylinder, E

R

r
a

R

b
=

∈
−⎛

⎝
⎞
⎠

ρ0
2

02

2

3

FIG. P24.50
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P24.53 
� �

� E A⋅ =
∈

=
∈∫ ∫d

q a

r
r dr

r
in

0 0

2

0

1
4π

 

E r
a

rdr
a r

E
a

r

4
4 4

2

2

2

0 0 0

2

0

π π π=
∈

=
∈

=
∈

=

∫

constant maagnitude

 (The direction is radially outward from center for positive a; radially inward for negative a.)

P24.54 The total fl ux through a surface enclosing the charge Q is 
Q

∈0

. 
The fl ux through the disk is

 Φdisk = ⋅∫
� �
E Ad

 where the integration covers the area of the disk. We must evaluate this 

integral and set it equal to 
1
4

0

Q

∈
 to fi nd how b and R are related. In the fi gure, 

take d
�
A to be the area of an annular ring of radius s and width ds. The fl ux 

through d
�
A is 

� �
E A⋅ = = ( )d EdA E sdscos cos .θ π θ2

 The magnitude of the electric fi eld has the same value at all points within the annular ring,

 E
Q

r

Q

s b
=

∈
=

∈ +
1

4

1

40
2

0
2 2π π

    and    cosθ = =
+( )

b

r

b

s b2 2 1 2
.

 Integrate from s = 0  to s R=  to get the fl ux through the entire disk.

 
ΦE

RQb sds

s b

Qb
s b, disk =

∈ +( ) =
∈

− +( )∫2 20
2 2 3 2

0 0

2 2 11 2

0 0
2 2 1 22

1⎡
⎣

⎤
⎦ =

∈
−

+( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
Q b

R b

 The fl ux through the disk equals 
Q

4 0∈
 provided that b

R b2 2 1 2

1

2+( )
= .

 This is satisfi ed if R b= 3 .

P24.55 (a)  Consider a cylindrical shaped gaussian surface 
perpendicular to the yz plane with one end in the yz plane 
and the other end containing the point x :

  Use Gauss’s law: 
� �

� E A⋅ =
∈∫ d
qin

0

   By symmetry, the electric fi eld is zero in the yz plane 
and is perpendicular to d

�
A over the wall of the gaussian 

cylinder. Therefore, the only contribution to the integral 
is over the end cap containing the point x:

  
� �

� E A⋅ =
∈∫ d
qin

0  
or EA

Ax
=

( )
∈

ρ

0

  so that at distance x from the mid-line of the slab, E
x=

∈
ρ

0

.

FIG. P24.54

x

y

z x

gaussian
surface

FIG. P24.55

continued on next page
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 Gauss’s Law 43

 (b) a
F

m

e E

m

e

m
x

e e e

= =
−( ) = −

∈
⎛
⎝⎜

⎞
⎠⎟

ρ
0

  The acceleration of the electron is of the form     a x= −ω 2 withω ρ=
∈
e

me 0

  Thus, the motion is simple harmonic with frequency f
e

me

= =
∈

ω
π π

ρ
2

1

2 0

P24.56 Consider the gaussian surface described in the solution to problem 59.

 (a) For x
d>
2

,    dq dV Adx CAx dx= = =ρ ρ 2

  

� �
E A⋅ =

∈

=
∈

=
∈

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫

d dq

EA
CA

x dx
CA d

d

1

1

3

0

0

2

0

2

0

33

8

⎛
⎝⎜

⎞
⎠⎟

  E
Cd=

∈

3

024
   or   

� �
E i E i=

∈
> = −

∈
< −Cd

x
d Cd

x
3

0

3

024 2 24
ˆ ; ˆ for  for 

dd

2

 (b) For − < <d
x

d

2 2
      

� �
E A⋅ =

∈
=

∈
=

∈∫ ∫ ∫d dq
CA

x dx
CAxx1

30 0

2

0

3

0

  
� �
E i E i=

∈
> = −

∈
<Cx

x
Cx

x
3

0

3

03
0

3
0ˆ ; ˆ for  for 

P24.57 (a) A point mass m creates a gravitational acceleration    
�
g r= − Gm

r2
ˆ

 
at a distance r

  The fl ux of this fi eld through a sphere is      
� �

� g A⋅ = − ( ) = −∫ d
Gm

r
r Gm2

24 4π π

   Since the r has divided out, we can visualize the fi eld as unbroken fi eld lines. The same 
fl ux would go through any other closed surface around the mass. If there are several or no 
masses inside a closed surface, each creates fi eld to make its own contribution to the net 
fl ux according to

  
� �

� g A⋅ = −∫ d Gm4π in

 (b) Take a spherical gaussian surface of radius r. The fi eld is inward so

  
� �

� g A⋅ = = −∫ d g r g r4 180 42 2π πcos °

  and − = −4 4
4

3
3π π π ρGm G rin

  Then, − = −g r G r4 4
4

3
2 3π π π ρ

 
and g r G= 4

3
π ρ

  Or, since    ρ
π

= M

R
E

E
4
3

3
, g

M Gr

R
E

E

= 3  or 
�
g = M Gr

R
E

E
3 inward

85646_24_ch24_p027-046.indd   4385646_24_ch24_p027-046.indd   43 8/31/07   7:57:43 PM8/31/07   7:57:43 PM



44 Chapter 24 

P24.58 The charge density is determined by Q a= 4

3
3π ρ  ρ

π
= 3

4 3

Q

a

 (a) The fl ux is that created by the enclosed charge within radius r:

  ΦE

q r r Q

a

Qr

a
=

∈
=

∈
=

∈
=

∈
in

0

3

0

3

0
3

3

0
3

4

3

4 3

3 4

π ρ π
π

 (b) ΦE

Q=
∈0

. Note that the answers to parts (a) and (b) agree at r a= .

 (c) 

a
r

ΦE

Q
∈0

0
0

  FIG. P24.58(c)

P24.59 
� �

� E A⋅ = ( ) =
∈∫ d E r
q

4 2

0

π in

 (a) − ×( ) ( ) =
× ⋅−3 60 10 4 0 100

8 85 10
3 2

12. .
.

 N C  m
 C N2π Q

mm2
  a r b< <( )

  Q = − × = −−4 00 10 4 009. . C  nC

 (b) We take ′Q to be the net charge on the hollow sphere. Outside c,

  + ×( ) ( ) = + ′
× −2 00 10 4 0 500

8 85 10
2 2

12. .
.

 N C  m
 C

π Q Q
22 2N m⋅

 r c>( )

  Q Q+ ′ = + × −5 56 10 9.  C , so ′ = + × = +−Q 9 56 10 9 569. . C  nC

 (c)  For b r c< < :  E = 0  and q Q Qin = + =1 0  where Q1  is the total charge on the inner 

surface of the hollow sphere. Thus, Q Q1 4 00= − = + . . nC

   Then, if Q2 is the total charge on the outer surface of the hollow sphere,

Q Q Q2 1 9 56 4 0 5 56= ′ − = − = +. . . . nC  nC  nC
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 Gauss’s Law 45

P24.60 The fi eld direction is radially outward perpendicular to the axis. The fi eld strength depends on 
r but not on the other cylindrical coordinates q or z. Choose a gaussian cylinder of radius r and 
length L. If r a< ,

 ΦE

q=
∈

in

0

 and E rL
L

2
0

π λ( ) =
∈

 E
r

=
∈

λ
π2 0

 or 
�
E r=

∈
<( )λ

π2 0r
r aˆ

 If a r b< < ,  E rL
L r a L

2
2 2

0

π
λ ρπ( ) =

+ −( )
∈

   
�
E r=

+ −( )
∈

< <( )
λ ρπ

π
r a

r
a r b

2 2

02
ˆ

 If r b> ,  E rL
L b a L

2
2 2

0

π
λ ρπ( ) =

+ −( )
∈

   
�
E r=

+ −( )
∈

>( )
λ ρπ

π
b a

r
r b

2 2

02
ˆ

ANSWERS TO EVEN PROBLEMS

P24.2 355 kN m C2⋅

P24.4 (a) − ⋅2 34.  kN m C2  (b) + ⋅2 34.  kN m C2  (c) 0

P24.6 (a) 
q

2 0∈
 (b) 

q

2 0∈
 (c) Plane and square both subtend a solid angle of a hemisphere at the 

charge.

P24.8 (a) −55 7.  nC (b) The negative charge has a spherically symmetric distribution concentric with 
the shell.

P24.10 (a) 1 36.  MN m C2⋅  (b) 678 kN m C2⋅  (c) No; see the solution.

P24.12 
Q q−

∈
6

6 0

P24.14 1 77.  pC m3 positive

P24.16 28 2.  N m C2⋅

P24.18 (a) 0 (b) 365 kN C (c) 1 46.  MN C (d) 649 kN C

P24.20 (a) 16 2.  MN C toward the fi lament (b) 8 09.  MN C toward the fi lament (c) 1 62.  MN C
toward the fi lament

P24.22 (a) A long cylindrical plastic rod 2.00 cm in radius carries charge uniformly distributed through-
out its volume, with density 5.00 mC/m3. Find the magnitude of the electric fi eld it creates at a 
point P, 3.00 cm from its axis. As a gaussian surface choose a concentric cylinder with its curved 
surface passing through the point P and with length 8.00 cm. (b) 3.77 kN/C
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P24.24 4 86.  GN C away from the wall. It is constant close to the wall.

P24.26 3 50.  kN

P24.28 (a) ~1 mN (b) ~100 nC (c) ~10 kN/C (d) ~10 kN · m2/C

P24.30 
�
E = Q/2∈

0
 A vertically upward in each case if Q > 0

P24.32 (a) 0 (b) 12 4.  kN C  radially outward (c) 639 N C radially outward (d) No answer changes. 
The solid copper sphere carries charge only on its outer surface.

P24.34 31.9 nC/m3

P24.36 The electric fi eld just outside the surface is given by s /∈
0
. At this point the uniformly charged 

surface of the sphere looks just like a uniform fl at sheet of charge.

P24.38 
chw2

2

P24.40 See the solution.

P24.42 (a) 2.00 mC (b) to the right (c) 702 kN/C (d) 0 (e) 0 (f ) 3.00 mC (g) 4.21 MN/C 
radially outward (h) 1.54 mC (i) 8.63 MN/C radially outward ( j) −3.00 mC 
(k) 2.00 mC (l) See the solution.

P24.44 (a, b) See the solution. (c) 1

2

2

3π
k e

m R
e

e

 (d) 102 pm

P24.46 (a) 0 (b) 
σ
∈0

to the right  (c) 0

P24.48 0 269.  N m C2⋅ ; 2.38 pC

P24.50 See the solution.

P24.52 (a) 
ρ0

02

2

3

r
a

r

b∈
−⎛

⎝⎜
⎞
⎠⎟  (b) 

ρ0
2

02

2

3

R

r
a

R

b∈
−⎛

⎝⎜
⎞
⎠⎟

P24.54 See the solution.

P24.56 (a) 
�
E i=

∈
>Cd

x
d3

024 2
ˆ for ; 

�
E i= −

∈
< −Cd

x
d3

024 2
ˆ for  (b) 

�
E i=

∈
>Cx

x
3

03
0ˆ ; for 

  
�
E i= −

∈
<Cx

x
3

03
0ˆ for 

P24.58 (a) Qr

a

3

0
3∈

 (b) 
Q

∈0

 (c) See the solution

P24.60 For r < a, 
�
E = l/2p∈

0
r radially outward. 

 For a < r < b, 
�
E = [l + rp(r2−a2)]/2p∈

0
r radially outward. 

 For r > b, 
�
E = [l + rp(b2−a2)]/2p∈

0
r radially outward.

85646_24_ch24_p027-046.indd   4685646_24_ch24_p027-046.indd   46 8/31/07   7:57:46 PM8/31/07   7:57:46 PM


