

(3) Zener Limiter

In addition to voltage regulation applications, zener diodes can be used in ac applications to limit voltage swings to desired levels.

Basic zener limiting action with a sinusoidal input voltage.

Other Special Purpose Diodes

Diode Name	Description	Applications	Symbol
Varactor Diode	 The depletion region acts as a capacitor dielectric. The <i>p</i> and <i>n</i> regions are conductive and act as the capacitor plates. Operates in reverse bias As the reverse-bias voltage increases, the depletion region widens, increasing the plate separation, thus decreasing the capacitance. 	Tuning circuits (parallel resonant circuits) in communication systems	
Light Emitting Diode (LED)	 Operates in forward bias Recombining of electrons with holes release energy as photons (Electroluminescence) Example: GaAs LED which gives IR light. 	 7-segment display IR LED in industrial applications LED displays Traffic Lights 	
Photo-Diode	 Operates in reverse bias When exposed to light, the reverse current increases with the light intensity. 	 CD players Smoke detectors TV receivers Variable Resistor 	
Laser Diode	 Operates in forward bias Due to recombination, photons released which strike atoms and cause other photons to be released forming an intense beam of laser light. 	 CD players Laser printers Fiber optic system 	
Schottky Diode	 Formed by joining a doped semiconductor region (usually n-type) with a metal When forwarded, the higher energy electrons in the n region are injected into the metal region where they give up their excess energy very rapidly, and a very rapid response to a change in bias occurs. The Schottky is a fast-switching diode (low V_F) 	 High switching applications Digital circuits 	

PIN Diode	 When reverse-biased, the pin diode acts like a nearly constant capacitance. When forward-biased, it acts like a current-controlled variable resistance. Contains intrinsic (not doped) semiconductor region. 	•	Used as a dc-controlled microwave switch. Modulating device because of changing R.	A
Tunnel Diode	 Special characteristic: Negative Resistance. Heavy doping IF B Negative-resistance VF A to B: acts as conductor B to C: negative resistance region C: Conventional diode 	•	Useful in oscillator Useful in microwave amplifiers Parallel resonant circuit RLC	