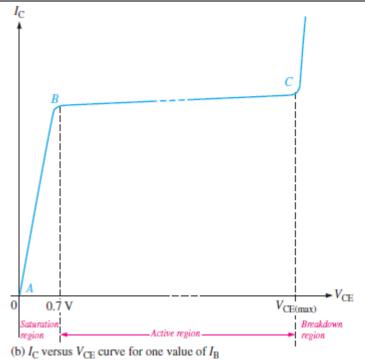
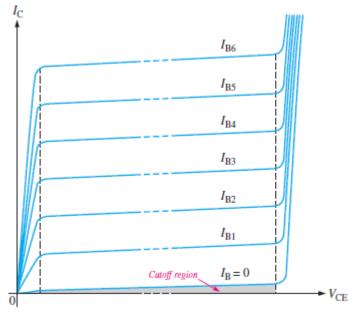

Collector Characteristic Curves

Figure (b):

- If V_{CC} = 0 → BE and BC are forwarded →
 BJT in Saturation Region → I_C
 independent of I_B.
- Points A-B: as V_{CC} increased, V_{CE} increased but still V_{CE} < 0.7 and BC is still forwarded. (I_C still increasing)
- Points B-C: $V_{CE} > 0.7 \Rightarrow$ BC: reversed, and BJT in the Linear region ($I_C = \beta_{DC} I_B$) and V_{CE} continues to increase

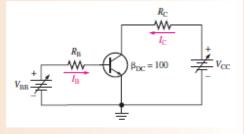

Note: β_{DC} is dependent on I_C and Temperature so the curve is not flat.


• **Point C**: BJT in **breakdown region**: at high V_{CE}, the reversed-biased BC junction breakdown and I_C increase rapidly.

Note: A transistor should never be operated in this breakdown region.

Figure (c):

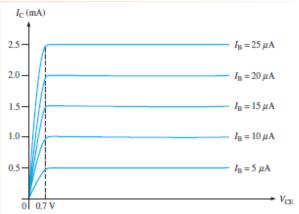
- A family of collector characteristic curves is produced when I_C versus V_{CE} is plotted for several values of I_B, as illustrated.
- When I_B =0, the transistor is in the **cutoff** region although there is a very small collector leakage current as indicated. The amount of collector leakage current for I_B =0 is exaggerated on the graph for illustration.



(c) Family of I_C versus V_{CE} curves for several values of I_B ($I_{B1} < I_{B2} < I_{B3}$, etc.)

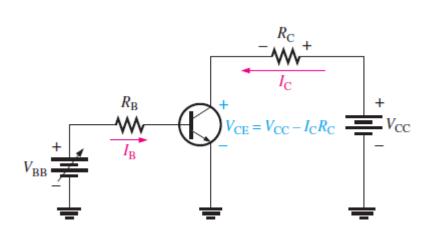
EXAMPLE 4-3

Sketch an ideal family of collector curves for the circuit in Figure 4–11 for $I_{\rm B}=5~\mu{\rm A}$ to 25 $\mu{\rm A}$ in 5 $\mu{\rm A}$ increments. Assume $\beta_{\rm DC}=100$ and that $V_{\rm CE}$ does not exceed breakdown.


FIGURE 4-11

Using the relationship $I_C = \beta_{DC}I_B$, values of I_C are calculated and tabulated in Table 4–1. The resulting curves are plotted in Figure 4–12.

IB	Ic
5 μΑ	0.5 mA
10 μA	1.0 mA
15 μA	1.5 mA
20 μΑ	2.0 mA
25 μΑ	2.5 mA


Cutoff

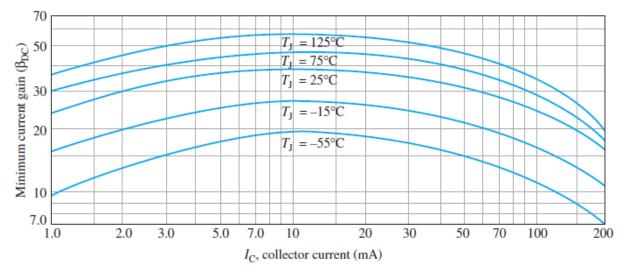
- BE and BC junctions are reversed biased
- $\begin{array}{ccc} \bullet & Collector & Leakage \\ & Current & I_{CEO} & is \\ & extremely & small & and \\ & is & neglected. \end{array}$

Saturation

- As I_B increases due to increasing V_{BB}, I_C also increases due to the increased voltage drop across R_C.
- When the transistor reaches saturation, I_C can increase no further regardless of further increase in I_B.
- BE and BC junctions are forward biased.
- $I_C = \beta_{DC} I_B$ is no longer valid.

Solution First, determine
$$I_{\text{C(sat)}}$$
.
$$I_{\text{C(sat)}} = \frac{V_{\text{CC}} - V_{\text{CE(sat)}}}{R_{\text{C}}} = \frac{10 \text{ V} - 0.2 \text{ V}}{1.0 \text{ k}\Omega} = \frac{9.8 \text{ V}}{1.0 \text{ k}\Omega} = 9.8 \text{ mA}$$

Now, see if I_B is large enough to produce $I_{C(sat)}$.


$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{3 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = \frac{2.3 \text{ V}}{10 \text{ k}\Omega} = 0.23 \text{ mA}$$

$$I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (50)(0.23 \text{ mA}) = 11.5 \text{ mA}$$

This shows that with the specified β_{DC} , this base current is capable of producing an I_C greater than $I_{C(sat)}$. Therefore, the transistor is saturated, and the collector current value of 11.5 mA is never reached. If you further increase I_B , the collector current remains at its saturation value of 9.8 mA.

More about BDC

The β_{DC} is not truly constant but varies with both collector current and with temperature.

▲ FIGURE 4-17

Variation of β_{DC} with I_C for several temperatures.