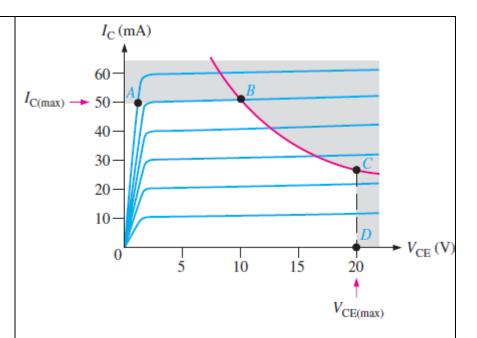
Maximum Transistor Rating

- Limitations specified in the datasheet
- Maximum rating are given for: V_{CE}, I_C, P_D, ...

Example:

Power Dissipation maximum ratings


$$P_{D (max)} = I_C \times V_{CE}$$

• For a given transistor, assume

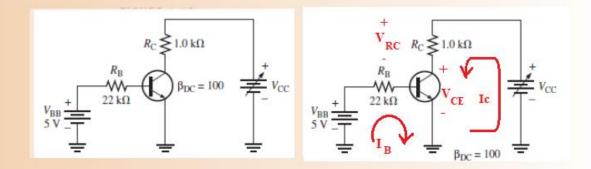
$$\begin{split} P_{D(max)} &= 500 \text{ mW} \\ V_{CE(max)} &= 20 \text{ V} \\ I_{C(max)} &= 50 \text{ mA}. \end{split}$$

• Let us take the following values:

$P_{\mathrm{D(max)}}$	$V_{\rm CE}$	$I_{\rm C}$
500 mW	5 V	100 mA
500 mW	10 V	50 mA
500 mW	15 V	33 mA
500 mW	20 V	25 mA

- From these values, the maximum power dissipation curve can be plotted on the collector characteristic curves, as shown. (red)
- The curve shows that this particular transistor cannot be operated in the shaded portion of the graph.

EXAMPLE 4-5


A certain transistor is to be operated with $V_{\rm CE} = 6$ V. If its maximum power rating is 250 mW, what is the most collector current that it can handle?

$$I_{\rm C} = \frac{P_{\rm D(max)}}{V_{\rm CE}} = \frac{250 \,\text{mW}}{6 \,\text{V}} = 41.7 \,\text{mA}$$

This is the maximum current for this particular value of V_{CE} . The transistor can handle more collector current if V_{CE} is reduced, as long as $P_{D(max)}$ and $I_{C(max)}$ are not exceeded.

EXAMPLE 4-6

The transistor in Figure 4–19 has the following maximum ratings: $P_{D(max)} = 800 \text{ mW}$, $V_{CE(max)} = 15 \text{ V}$, and $I_{C(max)} = 100 \text{ mA}$. Determine the maximum value to which V_{CC} can be adjusted without exceeding a rating. Which rating would be exceeded first?

Solution First, find I_B so that you can determine I_C .

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{5 \text{ V} - 0.7 \text{ V}}{22 \text{ k}\Omega} = 195 \,\mu\text{A}$$

$$I_{\rm C} = \beta_{\rm DC} I_{\rm B} = (100)(195 \,\mu\text{A}) = 19.5 \,\text{mA}$$

 $I_{\rm C}$ is much less than $I_{\rm C(max)}$ and ideally will not change with $V_{\rm CC}$. It is determined only by $I_{\rm B}$ and $\beta_{\rm DC}$.

The voltage drop across R_C is

$$V_{R_C} = I_C R_C = (19.5 \text{ mA})(1.0 \text{ k}\Omega) = 19.5 \text{ V}$$

So,

$$V_{\text{CC(max)}} = V_{\text{CE(max)}} + (V_{R_{\text{C}}} = 15 \text{ V} + 19.5 \text{ V} = 34.5 \text{ V}$$

 $V_{\rm CC}$ can be increased to 34.5 V, under the existing conditions, before $V_{\rm CE(max)}$ is exceeded. However, at this point it is not known whether or not $P_{\rm D(max)}$ has been exceeded.

$$P_{\rm D} = V_{\rm CE(max)}I_{\rm C} = (15 \text{ V})(19.5 \text{ mA}) = 293 \text{ mW}$$

Since $P_{D(max)}$ is 800 mW, it is not exceeded when $V_{CC} = 34.5$ V. So, $V_{CE(max)} = 15$ V is the limiting rating in this case. If the base current is removed causing the transistor to turn off, $V_{CE(max)}$ will be exceeded first because the entire supply voltage, V_{CC} , will be dropped across the transistor.

$Derating \ P_{D \ (max)}$

- $P_D(max)$ is usually specified at 25°C. For higher temperatures, $P_D(max)$ is less.
- Datasheets often give **derating factors** for determining P_D(max) at any temperature above 25°C.

EXAMPLE 4–7

A certain transistor has a $P_{D(max)}$ of 1 W at 25°C. The derating factor is 5 mW/°C. What is the $P_{D(max)}$ at a temperature of 70°C?

Solution

The change (reduction) in $P_{D(max)}$ is $\Delta P_{D(max)} = (5 \text{ mW/°C})(70 \text{°C} - 25 \text{°C}) = (5 \text{ mW/°C})(45 \text{°C}) = 225 \text{ mW}$ Therefore, the $P_{D(max)}$ at 70°C is 1 W - 225 mW = 775 mW

Note: an example of a BJT Datasheet is given in Page 189.