Transistor AC Models

To visualize the operation of a transistor in an amplifier circuit, it is often useful to represent the device by a model circuit that uses various internal transistor parameters to represent its operation.

(a) Generalized r-parameter model for a BJT

(b) Simplified r-parameter model for a BJT

☐ Transistor models used both : r- parameters and h - parameters

r - parameters

▼ TABLE 6-1

r parameters.

	r PARAMETER	DESCRIPTION
	$lpha_{ac}$	ac alpha (I_c/I_e)
	$oldsymbol{eta}_{ac}$	ac beta (I_c/I_b)
	$r_{arepsilon}'$	ac emitter resistance
Shc	ort << r/>r'b	ac base resistance
оре	en << $r_{\scriptscriptstyle C}'$	ac collector resistance

$$(r_b')$$
 small -> neglect -> short

$$(r'_c)$$
 several hunderd kilohms -> open

$$r'_e \cong \frac{25 \,\mathrm{mV}}{I_{\mathrm{E}}}$$
 T= 20°C.

h - parameters

lacktriangleq A manufacturer's datasheet typically specifies h (hybrid) parameters : hi, hr, hf, and ho

Basic ac h parameters.

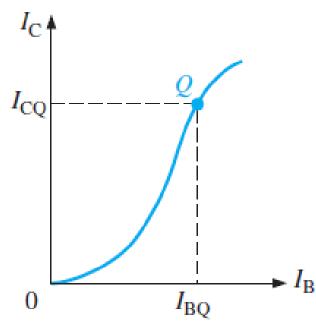
h PARAMETER	DESCRIPTION	CONDITION
h_i	Input impedance (resistance)	Output shorted
h_r	Voltage feedback ratio	Input open
h_f	Forward current gain	Output shorted
h_o	Output admittance (conductance)	Input open

h parameters for three amplifier configurations.

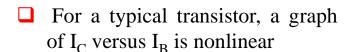
CONFIGURATION	h PARAMETERS
Common-Emitter	$h_{ie},h_{re},h_{fe},h_{oe}$
Common-Base	$h_{ib},h_{rb},h_{fb},h_{ob}$
Common-Collector	$h_{ic},h_{rc},h_{fc},h_{oc}$

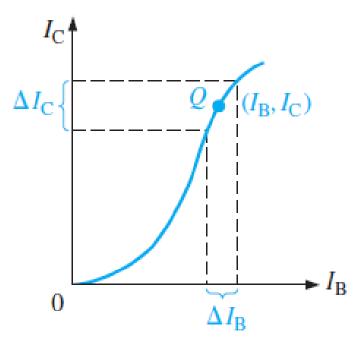
Relationships of *h* Parameters and *r* Parameters

$$\alpha_{ac} = h_{fb}$$

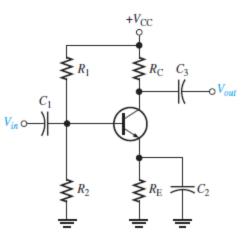

$$\beta_{ac} = h_{fe}$$

$$r'_{e} = \frac{h_{re}}{h_{oe}}$$


$$r'_{c} = \frac{h_{re} + 1}{h_{oe}}$$

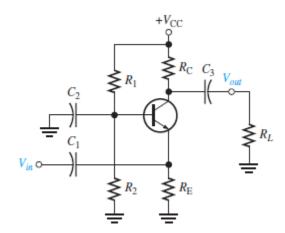

$$r'_{b} = h_{ie} - \frac{h_{re}}{h_{oe}}(1 + h_{fe})$$

Comparison between β_{ac} and β_{DC}

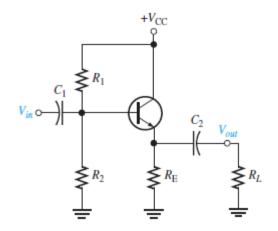


(b)
$$\beta_{ac} = \Delta I_{\rm C} / \Delta I_{\rm B}$$

If you pick a Q-point on the curve and cause the base current to vary an amount ΔI_B then the collector current will vary an amount ΔI_C


Three Amplifier Configurations

The common-emitter


- Input is at the base
- Output is at the collector.
- Emitter is at ac ground
- High voltage gain
- High current gain
- Phase inversion

The common-base

- Input is at the emitter
- Output is at the collector
- Base is at ac ground.
- High voltage gain
- Low input resistance

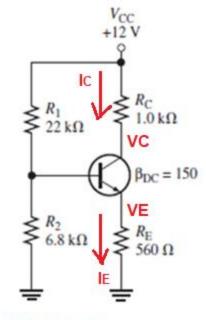

The common-collector

- Input is at the Base
- Output is at the emitter
- Collectors at ac ground.
- Voltage gain ~ 1
- Called also Voltage Follower
- No phase inversion

The Common-Emitter Amplifier

☐ CE amplifiers exhibit **high voltage gain** and **high current gain**.

The Common-Emitter Amplifier


DC Analysis

- All capacitors OPEN due to dc bias.
- Theveninizing the bias circuit and apply KVL to the base emitter circuit

$$\begin{split} R_{\rm TH} &= \frac{R_1 R_2}{R_1 + R_2} = \frac{(6.8 \, \mathrm{k}\Omega)(22 \, \mathrm{k}\Omega)}{6.8 \, \mathrm{k}\Omega + 22 \, \mathrm{k}\Omega} = 5.19 \, \mathrm{k}\Omega \\ V_{\rm TH} &= \left(\frac{R_2}{R_1 + R_2}\right) V_{\rm CC} = \left(\frac{6.8 \, \mathrm{k}\Omega}{6.8 \, \mathrm{k}\Omega + 22 \, \mathrm{k}\Omega}\right) 12 \, \mathrm{V} = 2.83 \, \mathrm{V} \end{split}$$

$$I_{\rm E} = \frac{V_{\rm TH} - V_{\rm BE}}{R_{\rm E} + R_{\rm TH}/\beta_{\rm DC}} = \frac{2.83 \text{ V} - 0.7 \text{ V}}{560 \Omega + 34.6 \Omega} = 3.58 \text{ mA}$$
 $I_{\rm C} \cong I_{\rm E} = 3.58 \text{ mA}$
 $V_{\rm E} = I_{\rm E}R_{\rm E} = (3.58 \text{ mA})(560 \Omega) = 2 \text{ V}$

$$V_{\rm B} = V_{\rm E} + 0.7 \,\text{V} = 2.7 \,\text{V}$$

 $V_{\rm C} = V_{\rm CC} - I_{\rm C}R_{\rm C} = 12 \,\text{V} - (3.58 \,\text{mA})(1.0 \,\text{k}\Omega) = 8.42 \,\text{V}$
 $V_{\rm CE} = V_{\rm C} - V_{\rm E} = 8.42 \,\text{V} - 2 \,\text{V} = 6.42 \,\text{V}$

▲ FIGURE 6-9

DC equivalent circuit for the amplifier in Figure 6–8.