Experiment No. 5 Variation of resistance with temperature

Objective:

To investigate the variation of the resistance of metals with temperature and to measure the temperature coefficient of resistance for copper.

Equipment:

Glass Beaker.

Metal resistance (coil of long wounded wire coated with mica)

Heating arrangement to heat the resistor.

Thermometer (0 - 100 C°).

Ohmmeter.

Theory:

The resistivity of a metal varies linearly with temperature (to first order approximation and when the temperature change is very small) according to,

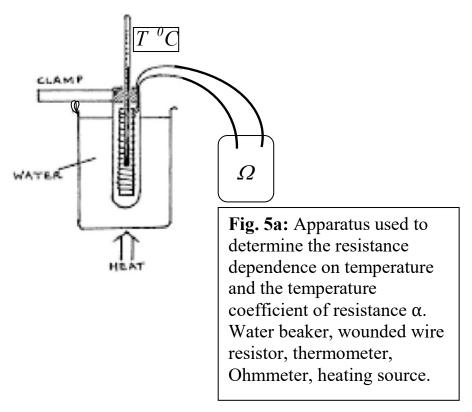
$$\rho = \rho_o \left[1 + \alpha (T - T_o) \right]$$

Where ρ is the resistivity at temperature T, ρ_o is the resistivity at some reference temperature T_o (taken to be 20 °C or room temperature).

The resistance ($R = \rho L/A$) can be thus expressed as

$$R = R_o [1 + \alpha (T - T_o)]$$
 $\Rightarrow R = R_o + R_o \alpha (T - T_o)$

$$R = R_o + R_o \alpha \Delta T$$

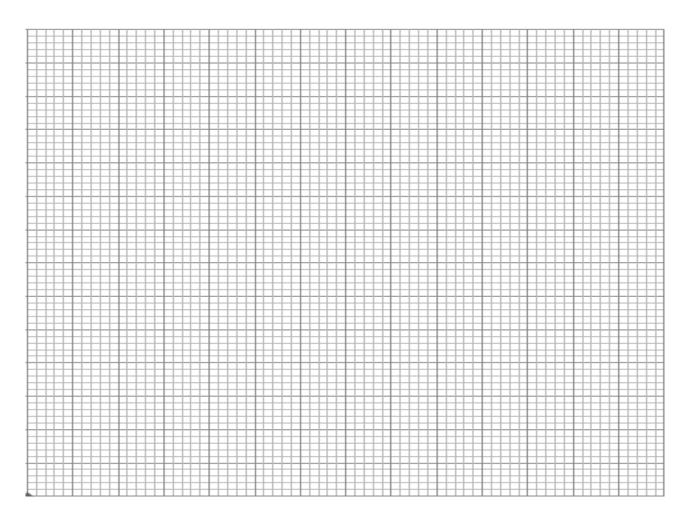

R is the resistance at temperature T.

 R_o is the resistance at reference temperature T_0 .

The coefficient α is called the temperature coefficient of resistance, and clearly, is given by the rate at which the resistance changes with temperature for a particular material and is usually quite constant over a wide range of temperature, it is defined as and since

$$\Delta R = R_o \alpha \Delta T$$

$$\alpha = \frac{(R - R_0)}{R_o(T - T_0)} = \frac{1}{R_o} \cdot (slope \ of \ R \ vesus \ T) \qquad \Rightarrow \alpha = \frac{S}{R_o}$$



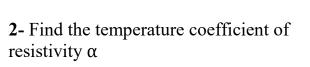
PROCEDURE:

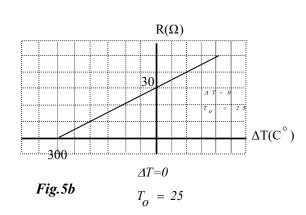
- 1. Set up the apparatus as shown in the diagram above in Fig 5a.
- 2. Use the thermometer to note the temperature of the water, which we assume to be the same as the temperature of the coil.
- 3. Record the resistance of the coil of wire using the ohmmeter.
- 4. Heat the beaker and for each 10 °C rise in temperature record the resistance and temperature using the ohmmeter and the thermometer, and fill the table in the lab. report which follows.
- 5. Plot a graph of resistance R against temperature T.

Experiment No. 5 Variation of resistance with temperature

Name: Day a	and Date:	
Student's No.: Sec:		• • • • • • • • • • • • • • • • • • • •
Partners Names:		
Data and Calculation:		
(1) Reference temperature $T_0 = 0$ °C,	T (°C)	$R(T) (\Omega)$
(2) Room temperature =°C,		
(3) Resistance R at room temperature R_{room} Ω		
(4) Plot R vs. T.		
(5) Use the graph to determine R_0 , the value of resistance at $T_0 = 0$,		
$\mathbf{R}_0 = \dots \Omega$		
(6) Determine T the temperature at which the resistance vanishes (when R=0)		
(This is the absolute zero $0K = -273$ °C)		
(7) Find the error in in this temperature if its accepted value is: -273 °C		
(8) Find the slope S of your graph.		
Slope = S =		
(9) Find the coefficient α		
(10) Find the percentage error in α knowing its known value to be 0.0039 for the wire used.		

$$R = R_o + R_o \alpha \Delta T$$


Slope =


 $\mathbf{R}_0 =$

Question: Exp.5: Variation of R with T:

The resistance of a coil at different temperatures is plotted in Fig. 5b

1- Find the resistance at room temperature T_0 = 25 °C

