Exp. No. 6: Kirchhoff's Rules

Objective:

To verify *Kirchhoff's rules* applied to *a two-loop circuit*.

Equipment:

Three carbon resistors (R_1 = 200, R_2 = 300, and R_3 = 120 ohms), two-terminal dc power supply (5 V and 10 V), multi-meters, a calculator, and a few connecting wires with alligator clips

Theory:

To solve for unknown currents in multi-loop circuits, we use Kirchhoff's *rules*. There are two rules:

Fig.1: Two-loop Circuit

"The sum of currents going toward a junction is equal to the sum of currents leaving that junction." In other words,

$$\sum I_{in} = \sum I_{out}$$
 (Due to the Conservation of charge)

the algebraic sum of currents to and away from a junction is zero. A junction is a point of connection of 3 or more wires. At the Junction c in Fig. 1. I_1 and I_3 leaves Junction c and is given a (-) sign. I_2 go toward Junction c, it is given (+) sign.

$$I_3 = I_1 + I_2 \tag{1}$$

(b) Kirchhoff's Loop Rule

This rule states that "the sum of voltage jumps and drops across the elements of any closed loop is zero."

Kirchhoff's Current Rule at the Junction c

$$\sum_{\substack{colsed\\loop}} \Delta V = V_{cc}$$
 (Conservation of energy)

Voltages due to the battery **V**, we write the voltage across that resistor as the product **RI**.

- 1) Rule for Batteries: As we trace a closed loop in either direction, if we go from (-) to (+) across a battery, it is a voltage jump and we write $+\varepsilon$ for that battery. If we happen to go from (+) to (-) of it, it is a voltage drop and we write it as $-\varepsilon$.
- 2) Rule for Resistors. If we trace in the direction of I, we write -RI (a voltage drop) across resistor R, and if our tracing direction opposes I, we write -RI (a voltage jump) across resistor R.

"voltage jump" means higher voltage, then write the product RI with a (+) sign. If our trace direction agrees with the assumed current I, it is like losing potential and the product RI deserves a (-) sign, "voltage drop".

For the circuit shown in Figure 1:

For loop (1)
$$\sum_{c} V = 0$$
 ϵ_1 - I_1R_1 - I_3R_3 =0
5 - 200 I_1 - 120 I_3 =0 or 5 = 200 I_1 + 120 I_3 (1-1)

For loop (2)
$$E_2 - I_2R_2 - I_3R_3 = 0$$
 $10 - 300I_2 - 120I_3 = 0$ or $10 = 300I_2 + 120I_3$ (2-1) $10 = 300(I_3 - I_1) + 120I_3$ $10 = -300I_1 + 420I_3$ (2-2) $I_1 = (5 - 120I_3)/200$ (1-2) $I_2 = (10 - 120I_3)/300$ (2-3) $I_3 = (5 - 120I_3)/200 + (10 - 120I_3)/300$ $= 0.025 - 0.6I_3 + 0.033 - 0.4 I_3$

$$I_2 = 0.33-0.4 I_3$$
 $I_1 = 0.025 - 0.4 I_3$

→ $0.058 = 2I_3$ → $I_3 = 0.029 A= 29 mA$

Procedure

Construct the two-loop circuit as shown in Fig. 3.

Chose R1, R2, and R3. Let
$$\mathcal{E}_1 = 5V$$
 and $\mathcal{E}_2 = 5V$.

Measure the *3 different currents* using the ammeter.

Measure the output voltage of batteries and across each resistor record.

Fig.3: Two-loop Circuit

Experiment No. 6 Kirchhoff's Rules

Name:	Day and Date:
Student's No.:	Sec:
Partners Names:	

Data: $\mathcal{E}_1 = 5V$,

$\mathbf{E_2}$	=	1	0	V

Resistors	\mathbf{R}_1	R ₂	R ₃
in Ω	200 Ω	300Ω	120Ω

Currents (A)	I_1	I ₂	I ₃
Calculated			
Measured via Ammeter			

Q1. Use the **measured values** of currents to prove that $I_3 = I_1 + I_2$.

Voltages (V)	V_1	\mathbf{V}_2	V_3
Calculated IR			
Measured via Voltmeter			

Q2. Use the measured values of voltages to prove the closed loop rule $\sum_{C} \Delta V = 0$. (e.g. is ϵ_1 - $V_1 - V_3 = 0$ **loop1**) and same for **loop2.**

Q3. In the **Fig.3.** Find the reading of ammeters A_1 and A_2 .

