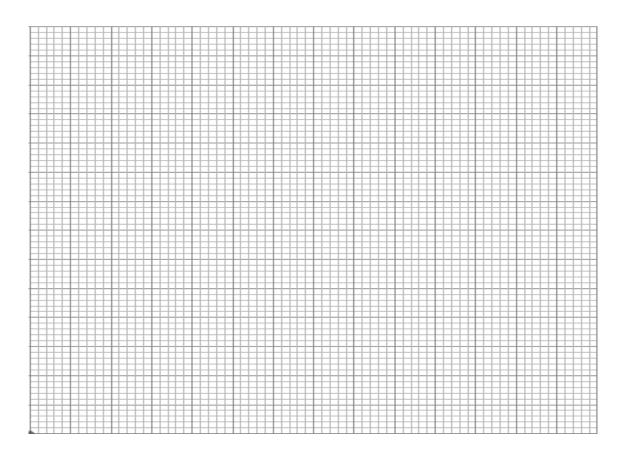
Exp. No. 3


Acceleration on Inclined Plane

Name:	Grade:		
Student's No.:	Day and Date:		
Partners Names:	Sec.:		
Data			

(1) Measure the sin of the inclination angle $\sin \theta = H/L =$

Trial	X (cm)	t ₁ sec	t ₂ sec	t ₃ sec	\overline{t} sec	$\overline{t}^2 \sec^2$
1						
2						
3						
4						
5						
6						

- (1) For each value of X find the average time squared \overline{t}^2 , and fill them in the table above.
- (2) Plot the distance traveled **X versus** \overline{t}^2 and connect the points with the best two lines. calculate the slope of each, call them S_{max} and S_{min}

 $S_{max} = \dots$ **(4)** Find

$$S_{min} = \dots$$

(5) Find the slope $S = (S_{max} + S_{min})/2 = \dots$

(6) Find the error in the slope $\Delta S = (S_{max} - S_{min})/2$

.....

(7) Find the acceleration due to gravity $g = \frac{a}{\sin\theta} = \frac{2S}{\sin\theta} = \frac{2S}{\sin\theta}$

.....

(8) Find the error in g

$$\Delta g = \dots$$

(9) Questions:

(1) Find the velocity of the glider at the bottom of the inclined plane in terms \mathbf{X} , \mathbf{g} , and $\mathbf{sin}\theta$.

(2) Is g constant at all locations on earth? Why?

(3) Discuss your result for g.