Experiment No.11

Objective:

1- To show where a small sphere falls with constant terminal velocity inside a viscous fluid

2- To determine the viscosity coefficient $\boldsymbol{\eta}$ of a fluid

Theory:

The resistance to the fluid flow due to the internal friction between adjacent fluid layers is called **viscosity**.

When a solid sphere is moving in a liquid, a viscous drag force F_D will be exerted on the sphere. According to Stokes' law, the drag force is proportional to the viscosity of the fluid, the **radius r =d/2** of the sphere, and the velocity (or speed) of the

$$F_D = 6\pi\eta \, rv = 3\pi\eta \, dv$$

Where, η is the coefficient of viscosity fluid. A steel ball is dropped into a fluid sample so that the gravitational force on the ball, $F_G = mg$, is larger than the buoyant force F_B . The net driving force *F* on the ball is:

$$mg - F_B = \frac{1}{6}\pi d^3(\rho - \rho_0)$$

If a sphere of diameter **d** and density ρ is allowed to fall from rest through a liquid of density ρ_o , it will accelerate by the gravitational force F_G opposed by viscous force F_D , and the buoyant force, or the upthrust force of the fluid F_B , until it reaches <u>a constant terminal velocity vt</u>, at this point F_G is balanced by the F_D and F_B :

$$F_B + F_D = F_G$$

Gravitational force: $F_G = mg = \frac{1}{6}\pi d^3 \rho g$, ρ the density of the ball Buoyant (upthrust) force: $F_B = \frac{1}{6}\pi d^3 \rho_0$ ρ_0 is the density of the liquid The viscous force: $F_D = 6 \pi \eta r v = 3 \pi \eta dv$ (R>>>r)

The balance of forces is illustrated in Figure 10.2. Equating the balanced forces yields:

$$F_{G} = F_{B} + F_{D}$$

$$F_{D} = \frac{1}{6}\pi d^{3}(\rho - \rho_{0})g$$

$$3\pi\eta dv_{t} = \frac{1}{6}\pi d^{3}(\rho - \rho_{0})g$$

$$\boxed{\eta = \frac{g}{18}(\rho - \rho_{0})\frac{d^{2}}{v_{t}}} \quad \text{Plot} \quad d^{2} \text{ vs. } v_{t} \text{ and determine the slope}$$

The coefficient η is determined by changing the sphere, i.e. the diameter d, and hence the terminal velocity and to plot the d^2 vs. v_t .

Procedure:

(A) Measure the terminal velocity:

1- Select some balls bearing the same diameter.

2- Drop one ball and use the stopwatch to find the time it takes the ball to traverse the required distance.

3- Change the distance and repeat step 2 for a different distance than the one used in step2

4- Tabulate your data in the table.

(B) Determine the viscosity coefficient of the liquid.

1- Choose a fixed distance to use each time.

2- Select 6 spheres of different diameters and measure their diameters using a micrometer.

3- Drop the sphere in liquid and use the stopwatch to find the time

4- Record your data in the table.

Exp. No.11 The Viscosity

 Name:
Grade:

 Student's No.:
Day and Date:

 Partners Names:
Sec:

Part 1: to show that a small sphere falls with a constant terminal velocity.

Construct a velocity-time graph and a velocity-distance graph. These will show the ball bearing accelerating until it reaches terminal velocity.

h(cm)	t₁ (sec)	t ₂ (sec)	t₃ (sec)	T (sec)	v=h/t cm/sec

Plot h vs \overline{t} and determine v_t

Part 2: Determination of the coefficient of viscosity:

Repeating the experiment with ball bearings of different mass and diameter will show that the terminal velocities of different bodies are different.

Sphere density = 7.8 gm/cm³ Liquid density = 1.12 gm/cm³ h =50 cm

d(cm)	d ²	t ₁ (s)	t ₂ (s)	t ₃ (s)	\overline{t} (s)	V	η

Plot a graph of d^2 vs. v_t . From the graph,

Determine the coefficient of viscosity.

The slope = S =

The coefficient of viscosity η =

What is the unit of η :

