Experiment No.11

Objective:

1- To show where a small sphere falls with constant terminal velocity inside a viscous fluid

2- To determine the viscosity coefficient η of a fluid

Theory:

The resistance to the fluid flow due to the internal friction between adjacent fluid layers is called **viscosity**.

When a solid sphere is moving in a liquid, a viscous drag force **FD** will be exerted on the sphere. According to Stokes' law, the drag force is proportional to the viscosity of the fluid, the **radius r =d/2** of the sphere, and the velocity (or speed) of the

$$
F_D = 6\pi\eta\,rv = 3\pi\eta\,dv
$$

Where, η is the coefficient of viscosity fluid. A steel ball is dropped into a fluid sample so that the gravitational force on the ball, **FG = mg**, is larger than the buoyant force **FB**. The net driving force *F* on the ball is:

$$
mg - F_B = \frac{1}{6}\pi d^3(\rho - \rho_0)
$$

If a sphere of diameter **d** and density ρ is allowed to fall from rest through a liquid of density ρ_{o} , it will accelerate by the gravitational force F_{G} opposed by viscous force **F**D, and the buoyant force, or the upthrust force of the fluid **F**B, until it reaches **a constant terminal velocity vt,** at this point **F**_G is balanced by the **F**_D and **F**_B:

$$
F_B+F_D=F_G
$$

Gravitational force:
$$
F_G = mg = \frac{1}{6}\pi d^3 \rho g
$$
, ρ the density of the ball
Buoyant (upthrust) force: $F_B = \frac{1}{6}\pi d^3 \rho_0$ ρ_0 is the density of the liquid
The viscous force: $F_D = 6 \pi \eta r v = 3 \pi \eta dv$ (R>>>r)

The balance of forces is illustrated in Figure 10.2. Equating the balanced forces yields:

Fig.10.2

$$
F_G = F_B + F_D
$$

\n
$$
F_D = \frac{1}{6} \pi d^3 (\rho - \rho_0) g
$$

\n
$$
3\pi \eta d v_t = \frac{1}{6} \pi d^3 (\rho - \rho_0) g
$$

\n
$$
\eta = \frac{g}{18} (\rho - \rho_0) \frac{d^2}{v_t}
$$
 Plot d^2 vs. v_t and determine the slope.

The coefficient η is determined by changing the sphere, i.e. the diameter d, and hence the terminal velocity and to plot the $d^{\;2}$ vs. $v_{\,t}$.

Procedure:

(A) Measure the terminal velocity:

1- Select some balls bearing the same diameter.

2- Drop one ball and use the stopwatch to find the time it takes the ball to traverse the required distance.

3- Change the distance and repeat step 2 for a different distance than the one used in step2

4- Tabulate your data in the table.

(B) Determine the viscosity coefficient of the liquid.

1- Choose a fixed distance to use each time.

2- Select 6 spheres of different diameters and measure their diameters using a micrometer.

3- Drop the sphere in liquid and use the stopwatch to find the time

4- Record your data in the table.

Exp. No.11 The Viscosity

Name: ……………………………………….……................….Grade: ……….………………… Student's No.: …………………………………..............… Day and Date: ……………………… Partners Names: …………………………..................………….................... Sec: ………………

Part 1: to show that a small sphere falls with a constant terminal velocity.

Construct a velocity-time graph and a velocity-distance graph. These will show the ball bearing accelerating until it reaches terminal velocity.

Plot h vs \overline{t} and determine v_t

Part 2: Determination of the coefficient of viscosity:

Repeating the experiment with ball bearings of different mass and diameter will show that the terminal velocities of different bodies are different.

Sphere density = 7.8 gm/cm³ Liquid density = 1.12 gm/cm³ h =50 cm

Plot a graph of $d^{\;2}$ vs. \overline{v}_t . From the graph,

Determine the coefficient of viscosity.

The slope $= S =$

The coefficient of viscosity η =

What is the unit of η :

