Chapter 3 Vectors (page 59)

Problems: 4, 12, 21, 23, 37, 51

3.1 Coordinate Systems

To describe object's location or **object's motion** requires describing **the object's position at various times.**

Cartesian coordinate system or *rectangular coordinates*, in which horizontal and vertical axes intersect at a point defined as the origin (Fig.1). Any point (x,y) can be expressed in a plane by its *polar coordinates* **(***r***, θ)**, as shown in Figure 1a. In this *polar coordinate system*, *r* is **the distance from the origin to the point** having **Cartesian coordinates (** x **,** y **)**, and θ is the angle between a line drawn from the origin to the point and a **fixed axis x-axis**.

Pythagorean Theorem, $r = \sqrt{x^2 + y^2}$, y tanθ x $=$

Example 3.1 Polar Coordinates

The Cartesian coordinates of a point in the *xy* plane are (x, y) = (- 3.50, -2.50) m as shown in Figure 3.3. Find the polar coordinates of this point.

Solution From the Equations $r = \sqrt{x^2 + y^2} = \sqrt{(-3.5)^2 + (-2.5)^2} = 4.30$ m $y -2.5$ $tan \theta = \frac{y}{\sqrt{2}} = \frac{2.5}{2.5} = 0.714$ $x -3.5$ \overline{a} $=\frac{y}{z}=\frac{-2.5}{z}$ \overline{a} θ = tan⁻¹ (0.714) = 35.5 + 180 = 215.5 $^{\circ}$

The signs of *x* and *y* determine where the point lies. It lies in the third quadrant of the coordinate system. (x, y) $(-,-)$

3.2 Vector and Scalar Quantities

Physical quantities are **scalar quantities** or **vector quantities**

A scalar quantity is completely specified by a single value with an appropriate unit and has no direction. (has only magnitude) Examples of scalar quantities are volume, mass, speed, and time

A vector quantity is completely specified by a number and appropriate units plus a direction.

Vector quantities: displacement; **Displacement depends only on the initial and final positions, so the displacement vector is independent of the path taken between these two points. Symbol: boldface letter A** (A vector).

Arrow is written over the symbol, vector:A . \rightarrow

3.3 Some Properties of Vectors

Equality of Two Vectors

Two vectors **A** and **B** may be **defined to be equal** if they have the **same magnitude and point in the same direction.** That is, $A = B$ only if $A = B$ and if A

and **B** point in the same direction along parallel lines.

Adding Vectors

Graphical methods: To add vector **B** to vector **A**, first draw vector **A** on graph paper, with its magnitude represented by a convenient length

scale, and then draw vector **B** to the same scale with its tail starting from the tip of **A**, as shown in **Figure 3b**. The **resultant vector** $R = A + B$ is the vector drawn from the **tail of A to the tip of B**. **Example** of adding two displacements: **4 m east, 3 m north** shown in Fig.3c.

For the case of four vectors, the resultant vector

R = **A** + **B** + **C** + **D,**

R is the vector drawn from the tail of the first vector to the tip of the last vector, and

completes the polygon Fig.4 .

Vector sum is independent of the order of the addition.

Commutative law of addition **Fig. 5a**:

A + **B** = **B** + **A**

Associative law of addition: (Fig. 5b)

A + (**B** + **C**) = (**A** + **B**) + **C**

Negative of a Vector

The negative of the vector **A** is defined as the vector that when added to A gives zero for the vector sum. That is,

$A + (-A) = 0.$

The vectors **A** and **– A** have the same magnitude but point in opposite directions.

Subtracting Vectors

We define the operation \mathbf{A} - **B** as vector - **B** added \mathbf{C} to vector **A**:

$$
A - B = A + (-B)
$$

The geometric construction for subtracting two vectors in this way is illustrated in the Figure 6b.

Example 3.2 A Vacation Trip

A car travels 20.0 km due **north** and then 35.0 km in a direction **60.0° west of north** as shown in Figure 3.11a. Find the magnitude and direction of the car's resultant displacement.

Solution

Geometrically, using graph paper and with an ordinary ruler and protractor, measure the

magnitude of R and its direction algebraically. The magnitude of **R** can be obtained from the law of cosines as applied to the triangle.

With θ=180° - 60° = 120°

$$
R = \sqrt{A^2 + B^2 + 2AB \cos \theta}, \quad R = \sqrt{A^2 + B^2 + 2AB \cos 60}
$$

= $\sqrt{20^2 + 35^2 - 2 \times 20 \times 35 \cos 120^\circ} = 48.2 \text{ km}$ [with – put cos120]

Same to put $R = \sqrt{A^2 + B^2 + 2AB \cos 60}$ [with + put cos60]

$$
\frac{\sin\beta}{B} = \frac{\sin\theta}{R} \quad \Rightarrow \sin\beta = B \times \frac{\sin\theta}{R} = 35 \times \frac{\sin 120^{\circ}}{48.2} = 0.629, \qquad \beta = 39^{\circ}
$$

Adding the **vectors in reverse order** $(B + A)$ gives the **same result** for **R**. (Fig. b)

Multiplying a Vector by a Scalar

If m is a positive scalar quantity, then the product *m***A** is a vector that has the same direction as **A** and magnitude *mA*.

If vector **A** is multiplied by **a negative** scalar quantity –*m*, then the product – *m***A**, is directed opposite **A**.

3.4 Components of a Vector and Unit Vectors

Adding vectors can be done using the components **of** the vectors.

A vector **A** can be expressed as the sum of two other vectors A_x and A_y . The three vectors form a right triangle such that $A = A_x + A_y$.

The "components of a vector **A**, are " written A_x and A_y (without the boldface notation). These components represent projection of A along the *corresponding axis*.

These components form two sides of a right triangle with a hypotenuse of length *A*. so

The magnitude and direction of **A** in terms of its components is given by the expressions

$$
A = \sqrt{A_x^2 + A_y^2}, \qquad \tan \theta = \frac{A_y}{A_x}, \qquad \theta = \tan^{-1} \left(\frac{A_y}{A_x} \right)
$$

Note that the signs of the components of A determine in which quadrant

the vector lies and which angle should take: **For example if** $\tan \theta = 1.73$, $\theta = 60^{\circ}$, 240°, if both the components is negative θ must equal 240°.

Unit Vectors

Unit-vectors: **a unit vector points in a certain direction but has a magnitude of 1**.

The symbols $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ are used to represent unit vectors pointing in the positive *x*, *y*, and *z* directions, respectively.

Consider a vector **A** lying in the *xy* plane, as shown in Figure.

This vector can be expressed as the sum of two other vectors A_x and A_y such that $A = A_x + A_y$.

The components of **A** are scalars written as A_x and A_y .

The vector A_x can be represented as the product of the component A_x and the unit vector \hat{i} .

The vector **A**y can be represented as the product of the component A_x and the unit vector $\hat{\textbf{j}}$.

In the unit–vector notation, the vector $A = A_x + A_y$ is given by

$$
\mathbf{A} = \mathbf{A}_{\mathbf{x}} \mathbf{\hat{i}} + \mathbf{A}_{\mathbf{y}} \mathbf{\hat{j}}
$$

The position of a point in the *xy* plane with Cartesian coordinates (*x*, *y*), can be specified by the position vector **r**, which in unit–vector form is given by

$$
\mathbf{r} = \mathbf{x}\hat{\mathbf{i}} + \mathbf{y}\hat{\mathbf{j}}
$$

To add vector **B** to vector **A**, we add the *x* and *y* components separately. The resultant vector $R = A + B$ is therefore

$$
\mathbf{R} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}) + (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}})
$$

\n
$$
\mathbf{R} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}} \qquad \text{but} \qquad \mathbf{R} = R_x \hat{\mathbf{i}} + R_y \hat{\mathbf{j}} \text{; therefore}
$$

\n
$$
R_x = A_x + B_x \qquad \text{and} \qquad R_y = A_y + B_y
$$

The magnitude of R and the angle it makes with the *x* axis is obtained from

$$
R = \sqrt{R_x^2 + R_y^2},
$$

\n
$$
\tan\theta = \frac{R_y}{R_x} = \frac{A_y + B_y}{A_x + B_x}
$$

For 2 vectors **A**, **B** in three dimensions

$$
\mathbf{A} = A_{x} \mathbf{\hat{i}} + A_{y} \mathbf{\hat{j}} + A_{z} \mathbf{\hat{k}}, \qquad \mathbf{B} = B_{x} \mathbf{\hat{i}} + B_{y} \mathbf{\hat{j}} + B_{z} \mathbf{\hat{k}}
$$

$$
\mathbf{R} = (A_{x} \mathbf{\hat{i}} + B_{x} \mathbf{\hat{i}}) + (A_{y} \mathbf{\hat{j}} + B_{y} \mathbf{\hat{j}}) + (A_{z} \mathbf{\hat{k}} + B_{z} \mathbf{\hat{k}})
$$

The angle $\Theta_{\sf x}$ that **R** makes with the *x* axis

$$
\cos\theta_{\rm x} = \frac{R_{\rm x}}{R}
$$

And magnitude: $R = \sqrt{R_x^2 + R_y^2 + R_z^2}$

Example 3.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the *xy* plane and given by

A = (2.0
$$
\hat{i}
$$
+2.0 \hat{j})m
\n**B** = (2.0 \hat{i} -4.0 \hat{j})m
\nSolution
\nR = (2.0+2.0) \hat{i} + (2.0-4.0) \hat{j} = 4.0 \hat{i} -2.0 \hat{j} m
\nR_x = 4.0m and R_y = -2.0m
\nR = $\sqrt{R_x^2 + R_y^2}$ = $\sqrt{4^2 + (-2)^2}$ = $\sqrt{20}$ = 4.5m
\n $\tan\theta = \frac{R_y}{R_x} = \frac{-2}{4}$ = -0.5, θ = -27° or θ = 333°

(This is correct if θ **is measured clockwise relative to the x axis, but with the standard convention, it is to be measured counterclockwise** from +x axis $\theta = 333^\circ$)

Example 3.4 The Resultant Displacement

A particle undergoes three consecutive displacements:

$$
\Delta \mathbf{r}_1 = (15\hat{\mathbf{i}} + 30\hat{\mathbf{j}} + 12\hat{\mathbf{k}}) \text{ cm},
$$

$$
\Delta \mathbf{r}_2 = (23\hat{\mathbf{i}} - 14\hat{\mathbf{j}} - 5.0\hat{\mathbf{k}}) \text{ cm}, \text{ and}
$$

$$
\Delta \mathbf{r}_3 = (-13\hat{\mathbf{i}} + 15\hat{\mathbf{j}}) \text{ cm}.
$$

Find the components of the **resultant displacement** and **its magnitude.**

Solution

the final position of the particle **from the origin** defines **the resultant displacement R .** To find **the resultant displacement**, **add the three vectors: [R is the vector from start to end]**

$$
R = \Delta r_1 + \Delta r_2 + \Delta r_3
$$

= (15 + 23 - 13) \hat{i} + (30 - 14 + 15) \hat{j} + (12 - 5.0) \hat{k} cm
= (25 \hat{i} + 31 \hat{j} + 7.0 \hat{k}) cm, R_x = 25cm, R_y = 31cm and R_z = 7.0cm

--

--

$R = \sqrt{R_x^2 + R_y^2 + R_z^2} = \sqrt{25^2 + 31^2 + 7.0^2} = 40$ cm

 Δ **r**₁ = 15 î + 30 ĵ + 12 k̂, Δ r₂ = 23i - 14j - 5k Δ r₃ = -13î +15ĵ all are in cm

$$
R = (15 + 23 - 13)\hat{i} + (30 - 14 + 15)\hat{j} + (12 - 5)\hat{k}
$$

Example 3.5 Taking a Hike

A hiker begins a trip by first walking **25.0 km southeast** from her car. She stops and sets up her tent (خيمة) for the night. On the second day, **she walks 40.0 km** in a direction **60.0° north of east**, at which point she discovers a forest ranger's tower.

(A) Determine the components of the hiker's displacement for each day.

Figure 3.17 (Example 3.5) The total displacement of the hiker is the vector $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$.

Solution

(A) Denote the displacement vectors on the first and second days by **A** and **B**, the resultant will be **R** as shown in the adjacent figure.

A has a magnitude of 25.0 km and is directed 45.0° below the positive *x* axis. **B** has a magnitude of 40.0 km and is 60.0° north of east. Adding A to **B** to get **R**:

$$
A_x = A\cos\theta = 25\cos(-45) = 25(0.707) = 17.7 \text{ km}
$$

$$
A_{y} = Asin\theta = 25sin(-45) = 25(-0.707) = -17.7km
$$

$$
B_x = B \cos \theta = 40 \cos(60) = 40 (0.5) = 20 \text{ km}
$$

$$
B_y = B \sin\theta = 40 \sin(60) = 40 (0.866) = 34.6 \text{ km}
$$

(B) Determine **the components of the hiker's resultant displacement R**

for the trip. Find an expression for **R** in terms of unit vectors.

 $R_x = A_x + B_x = 17.7 + 20 = 37.7$ km $R_{y} = A_{y} + B_{y} = -17.7 + 34.6 = 16.9$ km $(37.7 i + 16.9 j)$ km \wedge \wedge $R = (37.7 i + 16.9 j)$

Problem: 3-51 A person going for a walk follows the path shown in Fig. P3.51. the total trip consists of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point.

$$
\vec{d}_1 = 100 \hat{i} \text{ m},
$$
\n
$$
\vec{d}_2 = (-300 \hat{j}) \text{ m}
$$
\n
$$
\vec{d}_3 = (-150 \cos 30^\circ \hat{i} - 150 \sin 30^\circ \hat{j}) = (-130 \hat{i} - 75 \hat{j}) \text{ m}
$$
\n
$$
\vec{d}_4 = (-200 \cos 60^\circ \hat{i} + 200 \sin 60^\circ \hat{j}) = (-100 \hat{i} + 173 \hat{j}) \text{ m}
$$
\n
$$
\vec{d} = \vec{d}_1 + \vec{d}_2 + \vec{d}_3 + \vec{d}_4 = (-130 \hat{i} - 202 \hat{j}) \text{ m}
$$
\n
$$
d = \sqrt{(-130)^2 + (-202)^2} = 240 \text{ m},
$$
\n
$$
\theta = \tan^{-1} \left(\frac{-202}{-130}\right) = 57.2^\circ + 180 = 237.2^\circ
$$

لاحظ الزاوية تقع في الربع الثالث وليس الاول لان الإزاحة السينية والصادية سالبتين