(page 59)

Chapter 3 Vectors

Problems: 4, 12, 21, 23, 37, 51

3.1 Coordinate Systems

To describe object's location or **object's motion** requires describing **the object's position at various times.**

Cartesian coordinate system or *rectangular coordinates*, in which horizontal and vertical axes intersect at a point defined as the origin (Fig.1). Any point (x,y) can be expressed in a plane by its *polar coordinates* (r, θ), as shown in Figure 1a. In this *polar coordinate system*, r is the distance from the origin to the point having Cartesian coordinates (x, y), and θ is the angle between a line drawn from the origin to the point and a fixed axis x-axis.

Pythagorean Theorem, $r = \sqrt{x^2 + y^2}$, $tan\theta = \frac{y}{x}$

Example 3.1 Polar Coordinates

The Cartesian coordinates of a point in the *xy* plane are (x, y) = (- 3.50, -2.50) m as shown in Figure 3.3. Find the polar coordinates of this point.

The signs of x and y determine where the point lies. It lies in the third quadrant of the coordinate system. (x, y)(-, -)

3.2 Vector and Scalar Quantities

Physical quantities are scalar quantities or vector quantities

A scalar quantity is completely specified by a single value with an appropriate unit and <u>has no direction</u>. (has only magnitude) Examples of scalar quantities are volume, mass, speed, and time

A vector quantity is completely specified by a number and appropriate units plus a direction.

Vector quantities: displacement; Displacement depends only on the initial and final positions, so the displacement vector is independent of the path taken between these two points. Symbol: boldface letter A (A vector).

Arrow is written over the symbol, vector: A.

3.3 Some Properties of Vectors

Equality of Two Vectors

Two vectors **A** and **B** may be **defined to be equal** if they have the **same magnitude and point in the same direction.** That is, **A** = **B** only if *A* = *B* and if **A** and **B** point in the same direction along parallel lines.

Adding Vectors

Graphical methods: To add vector **B** to vector **A**, first draw vector **A** on graph paper, with its magnitude represented by a convenient length

scale, and then draw vector **B** to the same scale with its tail starting from the tip of **A**, as shown in **Figure 3b**. The **resultant vector** $\mathbf{R} = \mathbf{A} + \mathbf{B}$ is the vector drawn from the **tail of A to the tip of B**. **Example** of adding two displacements: **4 m east, 3 m north** shown in Fig.3c.

For the case of four vectors, the resultant vector

 $\mathbf{R} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D},$

R is the vector drawn from the tail of the first vector to the tip of the last vector, and

completes the polygon Fig.4 .

Vector sum is independent of the order of the addition.

Commutative law of addition Fig. 5a:

 $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$

Associative law of addition: (Fig. 5b)

A + (B + C) = (A + B) + C

Negative of a Vector

The negative of the vector **A** is defined as the vector that when added to A gives zero for the vector sum. That is,

PTUK

The vectors **A** and **– A** have the same magnitude but point in opposite directions.

Subtracting Vectors

We define the operation **A** - **B** as vector - **B** added vector **A**:

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B})$$

The geometric construction for subtracting two vectors in this way is illustrated in the Figure 6b.

Example 3.2 A Vacation Trip

A car travels 20.0 km due **north** and then 35.0 km in a direction **60.0° west of north** as shown in Figure 3.11a. Find the magnitude and direction of the car's resultant displacement.

Solution

Geometrically, using graph paper and with an ordinary ruler and protractor, measure the

magnitude of R and its direction algebraically. The magnitude of **R** can be obtained from the law of cosines as applied to the triangle.

With θ =180° - 60° = 120°

$$R = \sqrt{A^{2} + B^{2} + 2AB \cos \theta}, \quad R = \sqrt{A^{2} + B^{2} + 2AB \cos 60}$$
$$= \sqrt{20^{2} + 35^{2} - 2 \times 20 \times 35 \cos 120^{\circ}} = 48.2 \text{ km} \quad \text{[with - put cos120]}$$

Same to put $R = \sqrt{A^2 + B^2 + 2AB \cos 60}$ [with + put cos60]

$$\frac{\sin\beta}{B} = \frac{\sin\theta}{R} \implies \sin\beta = B \times \frac{\sin\theta}{R} = 35 \times \frac{\sin 120^{\circ}}{48.2} = 0.629, \qquad \beta = 39^{\circ}$$

Adding the vectors in reverse order (B + A) gives the same result for R. (Fig. b)

Multiplying a Vector by a Scalar

If m is a positive scalar quantity, then the product \underline{mA} is a vector that has the same direction as A and <u>magnitude mA</u>.

If vector **A** is multiplied by **a negative** scalar quantity $\underline{-m}$, then the product $-m\mathbf{A}$, is directed <u>opposite **A**</u>.

3.4 Components of a Vector and Unit Vectors

Adding vectors can be done using the components **of** the vectors.

A vector **A** can be expressed as the sum of two other vectors \mathbf{A}_x and \mathbf{A}_y . The three vectors form a right triangle such that $\mathbf{A} = \mathbf{A}_x + \mathbf{A}_y$.

The "components of a vector **A**, are " written A_x and A_y (without the boldface notation). These components represent projection of A along the *corresponding axis*.

These components form two sides of a right triangle with a hypotenuse of length A. so

The magnitude and direction of **A** in terms of its components is given by the expressions

$$A = \sqrt{A_x^2 + A_y^2}, \qquad \tan \theta = \frac{A_y}{A_x}, \qquad \theta = \tan^{-1} \left(\frac{A_y}{A_x}\right)$$

PTU

Note that the signs of the components of A determine in which quadrant

<u>the vector lies</u> and which angle should take: For example if $\tan \theta = 1.73$, $\theta = 60^{\circ}$, 240°, if both the components is negative θ must equal 240°.

Unit Vectors

Unit-vectors: a unit vector points in a certain direction but has a magnitude of 1.

The symbols \hat{i} , \hat{j} and \hat{k} are used to represent unit vectors pointing in the positive *x*, *y*, and *z* directions, respectively.

Consider a vector **A** lying in the *xy* plane, as shown in Figure.

This vector can be expressed as the sum of two other vectors \mathbf{A}_x and \mathbf{A}_y such that $\mathbf{A} = \mathbf{A}_x + \mathbf{A}_y$.

The components of \boldsymbol{A} are scalars written as A_x and $A_y.$

The vector \bm{A}_x can be represented as the product of the component A_x and the unit vector \hat{i} .

The vector \mathbf{A}_{y} can be represented as the product of the component A_{x} and the unit vector $\hat{\mathbf{j}}$.

In the unit–vector notation, the vector $\mathbf{A} = \mathbf{A}_x + \mathbf{A}_y$ is given by

$$\mathbf{A} = \mathbf{A}_{\mathsf{x}} \hat{\mathbf{i}} + \mathbf{A}_{\mathsf{y}} \hat{\mathbf{j}}$$

The position of a point in the *xy* plane with Cartesian coordinates (x, y), can be specified by the position vector **r**, which in unit–vector form is given by

$$\mathbf{r} = \mathbf{x} \hat{\mathbf{i}} + \mathbf{y} \hat{\mathbf{j}}$$

To add vector **B** to vector **A**, we add the *x* and *y* components separately. The resultant vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$ is therefore

$$\mathbf{R} = (\mathbf{A}_{x} \ \hat{\mathbf{i}} + \mathbf{A}_{y} \ \hat{\mathbf{j}}) + (\mathbf{B}_{x} \ \hat{\mathbf{i}} + \mathbf{B}_{y} \ \hat{\mathbf{j}})$$

$$\mathbf{R} = (\mathbf{A}_{x} + \mathbf{B}_{x}) \ \hat{\mathbf{i}} + (\mathbf{A}_{y} + \mathbf{B}_{y}) \ \hat{\mathbf{j}} \qquad \text{but} \qquad \mathbf{R} = \mathbf{R}_{x} \ \hat{\mathbf{i}} + \mathbf{R}_{y} \ \hat{\mathbf{j}}; \text{ therefore}$$

$$\mathbf{R}_{x} = \mathbf{A}_{x} + \mathbf{B}_{x} \qquad \text{and} \qquad \mathbf{R}_{y} = \mathbf{A}_{y} + \mathbf{B}_{y}$$

The magnitude of R and the angle it makes with the *x* axis is obtained from

$$R = \sqrt{R_x^2 + R_y^2},$$

$$tan\theta = \frac{R_y}{R_x} = \frac{A_y + B_y}{A_x + B_x}$$

For 2 vectors **A**, **B** in three dimensions

$$\mathbf{A} = \mathbf{A}_{x}\hat{\mathbf{i}} + \mathbf{A}_{y}\hat{\mathbf{j}} + \mathbf{A}_{z}\hat{\mathbf{k}}, \qquad \mathbf{B} = \mathbf{B}_{x}\hat{\mathbf{i}} + \mathbf{B}_{y}\hat{\mathbf{j}} + \mathbf{B}_{z}\hat{\mathbf{k}}$$
$$\mathbf{R} = (\mathbf{A}_{x}\hat{\mathbf{i}} + \mathbf{B}_{x}\hat{\mathbf{i}}) + (\mathbf{A}_{y}\hat{\mathbf{j}} + \mathbf{B}_{y}\hat{\mathbf{j}}) + (\mathbf{A}_{z}\hat{\mathbf{k}} + \mathbf{B}_{z}\hat{\mathbf{k}})$$

The angle θ_x that **R** makes with the *x* axis

$$\cos \theta_{x} = \frac{R_{x}}{R}$$

And magnitude: $R = \sqrt{R_x^2 + R_y^2 + R_z^2}$

Example 3.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the xy plane and given by

$$A = (2.0\hat{i} + 2.0\hat{j})m \qquad B = (2.0\hat{i} - 4.0\hat{j})m$$

Solution
$$R = (2.0 + 2.0)\hat{i} + (2.0 - 4.0)\hat{j} = 4.0\hat{i} - 2.0\hat{j}m$$
$$R_x = 4.0m \qquad \text{and} \qquad R_y = -2.0m$$
$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{4^2 + (-2)^2} = \sqrt{20} = 4.5m$$
$$\tan\theta = \frac{R_y}{R_x} = \frac{-2}{4} = -0.5 \quad , \quad \theta = -27^\circ \text{ or } \theta = 333^\circ$$

(This is correct if θ is measured clockwise relative to the x axis, but with the standard convention, it is to be measured counterclockwise from +x axis $\theta = 333^{\circ}$)

Example 3.4 The Resultant Displacement

A particle undergoes three consecutive displacements:

$$\Delta \mathbf{r}_1 = (15\hat{\mathbf{i}} + 30\hat{\mathbf{j}} + 12\hat{\mathbf{k}}) \text{ cm},$$

 $\Delta \mathbf{r}_2 = (23\hat{\mathbf{i}} - 14\hat{\mathbf{j}} - 5.0\hat{\mathbf{k}}) \text{ cm}, \text{ and}$
 $\Delta \mathbf{r}_3 = (-13\hat{\mathbf{i}} + 15\hat{\mathbf{j}}) \text{ cm}.$

Find the components of the resultant displacement and its magnitude.

Solution

the final position of the particle from the origin defines the resultant displacement R. To find the resultant displacement, add the three vectors: [R is the vector from start to end]

$$R = \Delta r_1 + \Delta r_2 + \Delta r_3$$

= (15+23-13) \hat{i} + (30-14+15) \hat{j} + (12-5.0) \hat{k} cm
= (25 \hat{i} +31 \hat{j} +7.0 \hat{k}) cm , R_x = 25cm, R_y = 31cm and R_z = 7.0cm

$R = \sqrt{R_x^2 + R_y^2 + R_z^2} = \sqrt{25^2 + 31^2 + 7.0^2} = 40 \text{ cm}$

$$\begin{split} \Delta \mathbf{r}_1 &= 15\,\hat{\mathbf{i}} + 30\,\hat{\mathbf{j}} + 12\,\hat{\mathbf{k}}\,,\\ \Delta \mathbf{r}_2 &= 23\,\hat{\mathbf{i}} - 14\,\hat{\mathbf{j}} - 5\,\hat{\mathbf{k}}\\ \Delta \mathbf{r}_3 &= -13\,\hat{\mathbf{i}} + 15\,\hat{\mathbf{j}} \qquad \text{all are in cm} \end{split}$$

$$\mathbf{R} = (15 + 23 - 13)\hat{i} + (30 - 14 + 15)\hat{j} + (12 - 5)\hat{k}$$

Example 3.5 Taking a Hike

A hiker begins a trip by first walking **25.0 km** southeast from her car. She stops and sets up her tent (خيمة) for the night. On the second day, she walks **40.0 km** in a direction **60.0°** north of east, at which point she discovers a forest ranger's tower.

(A) Determine the components of the hiker's displacement for each day.

Figure 3.17 (Example 3.5) The total displacement of the hiker is the vector $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$.

Solution

(A) Denote the displacement vectors on the first and second days by A and B, the resultant will be R as shown in the adjacent figure.

A has a <u>magnitude of 25.0 km and is directed 45.0° below</u> the positive *x* axis. **B** has a <u>magnitude of 40.0 km and is 60.0° north of east</u>. Adding A to **B** to get **R**:

$$A_x = A\cos\theta = 25\cos(-45) = 25(0.707) = 17.7$$
km

$$A_v = Asin\theta = 25sin(-45) = 25(-0.707) = -17.7 km$$

$$B_x = B \cos \theta = 40 \cos(60) = 40 (0.5) = 20 \text{ km}$$

$$B_v = B \sin\theta = 40 \sin(60) = 40 (0.866) = 34.6 \text{ km}$$

(B) Determine the components of the hiker's resultant displacement R

for the trip. Find an expression for **R** in terms of unit vectors.

 $R_x = A_x + B_x = 17.7 + 20 = 37.7 \text{ km}$ $R_y = A_y + B_y = -17.7 + 34.6 = 16.9 \text{ km}$ $\mathbf{R} = (37.7\hat{i} + 16.9\hat{j}) \text{ km}$

Problem: 3-51 A person going for a walk follows the path shown in Fig. P3.51. the total trip consists of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point.

$$\vec{d}_{1} = 100\hat{i} \text{ m},$$

$$\vec{d}_{2} = (-300\hat{j})\text{ m}$$

$$\vec{d}_{3} = (-150\cos 30^{\circ}\hat{i} - 150\sin 30^{\circ}\hat{j}) = (-130\hat{i} - 75\hat{j})\text{ m}$$

$$\vec{d}_{4} = (-200\cos 60^{\circ}\hat{i} + 200\sin 60^{\circ}\hat{j}) = (-100\hat{i} + 173\hat{j})\text{ m}$$

$$\vec{d} = \vec{d}_{1} + \vec{d}_{2} + \vec{d}_{3} + \vec{d}_{4} = (-130\hat{i} - 202\hat{j})\text{ m}$$

$$d = \sqrt{(-130)^{2} + (-202)^{2}} = 240\text{ m},$$

$$\theta = \tan^{-1}\left(\frac{-202}{-130}\right) = 57.2^{\circ} + 180 = 237.2^{\circ}$$

لاحظ الزاوية تقع في الربع الثالث وليس الاول لان الإزاحة السينية والصادية سالبتين