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Ch6. Circular Motion                           page 150 
CH6 Circular 4 hrs. Discussion ch6: 1, 6, 8, 10, 16, 18, 65 

 

4.4 Analysis Model: Particle 
in Uniform Circular Motion                   page 91 

When an object is moving on circular path with 
constant speed v, we call this motion uniform 
circular motion. 
Velocity changes in direction but its magnitude 
remains constant, the object has an 

acceleration called the centripetal (مركزي) 
acceleration 
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 [ *شير نحو المركز ]    

The time to complete one circle is called 
period T,  Where   T = distance 
travelled/v       
= 2� r/ v  =  السرعة 1المح0ط  

2π
ω

T
     is the angular 

velocity                   

4.5 Tangential and    Radial 
Acceleration page 94 

When the of a particle 
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moving in curved path with velocity changes both in direction and 
in magnitude, the particle has a total acceleration 

a  = at + ar 

t

dv
a

dt
 ,          

2

r c

v
a a

r
     

2 2

t ra a a   

Example 4.6 The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in 
its orbit around the Sun? 

2πr
v

T
 , 

2
2 2 2 11

3 2

c 2 2

2πr
( )

v 4π r 4π 1.496 10Ta 5.93 10 m / s
r r T (365 24 60 60)

 
     

    

1yr 365 24 60 60 sec     
 
(B) What is the angular speed of the Earth in its orbit around the 
Sun? 

7 1

7

2π 2π 2π
ω 1.99 10 s

T 1yr 3.156 10 s

    


 

Example 4.7    Over the Rise 

A car leaves a stop sign and exhibits a 
constant acceleration of 0.300 m/s2 
parallel to the roadway. The car passes 
over a rise in the roadway such that the 
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top of the rise is shaped like an arc of a circle of radius 500 m. At 
the moment the car is at the top of the rise, its velocity vector is 
horizontal and has a magnitude of 6.00 m/s. What are the 
magnitude and direction of the total acceleration vector for the car 
at this instant? 

S o l u t i o n 

       
2 2

2

r c

v 6.00
a a 0.072m/s

r 500
2 2 2 2 2

t ra a a ( 0.072) (0.300) 0.309 m /s       

1 o

a

0.072
θ tan ( ) 13.5

0.300

 
    

Section 4.5 Tangential and Radial 
Acceleration 
4-40. Figure P4.40 represents the total 

acceleration of a particle moving clockwise 

in a circle of radius 2.50 m at a certain 

instant of time. For that instant, 

find (a) the radial acceleration of the particle, (b) the speed of the 

particle, and (c) its tangential acceleration. 

ar = − ac = - a cos 30 = - 15.0 ( 0.866)= - 13 m/s2 

2

c
v = a r = 13 × 2.5 = 32.5    v = 32.5 = 5.7m / s  

at = a sin 30 = 15.0 (0.5)= 7.5 m/s2 

4-42. A ball swings (يتأرجح) counterclockwise in a vertical circle at 

the end of a rope 1.50 m long. When the ball is 36.9° past the 

lowest point (ادنى نقطة) on its way up, its total acceleration is 

ˆ ˆ( 22.5i 20.2 j )  m/s2 .  
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For that instant, (a) sketch a vector diagram 

showing the components of its acceleration, (b) 

determine the magnitude of its radial acceleration, 

and (c) determine the speed and velocity of the 

ball. 

(a) The diagram is shown in the figure. 

(b) The magnitude of the radial acceleration is the sum of the 

components of -22.5 and 20.2 along the rope and in the inwards 

direction, 

2
ra 20.2cos(36.9) 22.5cos(53.1) 29.7m/s    

(c)   
2

r r

v
a    v r a (1.5)(29.7) 6.67 m/s

r
      

at   36.9o above the horizontal. 

4-43. (a) Can a particle moving with instantaneous speed 

3.00 m/s on a path with radius of curvature 2.00 m 

have an acceleration of magnitude 6.00 m/s2? (b) Can 

it have an acceleration of magnitude 4.00 m/s2? In 

each case, if the answer is yes, explain how it can happen; 

if the answer is no, explain why not. 

  
2 2

2

r

v 3
a 4.5m / s

r 2  

 2 2

t ra a a
 

(a) Yes because at ≠0 tangential acceleration may not zero. And 

the particle may be speeding or slowing 

    2 2 2 2 2

t ra a a 6 4.5 3.97m / s  

(b) Total a cannot be less than ar. 

x
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Chapter 6 
Circular Motion and Other 

Applications of Newton’s Laws 

 
6.1 Extending the Particle in Uniform 

Circular Motion Model 

A particle moving with constant speed v in a 

circular path of radius r experiences an acceleration that has a 

magnitude 
2

c

v
a

r
  

ac is the centripetal acceleration, 

directed toward the center of the 

circle and perpendicular to the 

velocity v. 

 

Consider a puck of mass m that is tied 

to a string of length r and moves at 

constant speed in a horizontal, circular 

path as illustrated in Figure 6.1. Its 

weight is supported by a frictionless table, and the string is 

anchored to a peg at the center of the circular path of the puck. 

 

The radial force Fr directed along the string toward the 

center of the circle, causing the centripetal acceleration and 

from Newton’s 2nd law: 
2

r c

v
F ma m ,

r
    

 

When the string is cut the ball leaves the circle and move in 

straight line. 
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m.r 51 T

kg.m 500

Example 6.1 The Conical Pendulum 

A small object of mass m is suspended from a string of length L. 

The object revolves with constant speed v in a horizontal circle 

of radius r, as shown in Figure. (Because the string sweeps out 

the surface of a cone, the system is known as a conical 

pendulum.) Find an expression for v. 

Solution 

From the free-body diagram 

shown, the force T exerted by the 

string is resolved into two 

components, such that: 

y yF ma 0 T cos  mg      

The centripetal force: 
2

c

v
F ma , or    Tsinθ m

r
    , 

Tcos θ mg  
2v

Tsinθ m
r

         
2v

tan θ
rg

   

v rgtanθ  

Further:       r Lsinθ ,        v g Lsinθtanθ  

 

Example 6.2 How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to 

the end of a cord 1.50 m long. The 

puck moves in a horizontal circle as 

shown in Figure. If the cord can 

withstand a maximum tension of 50.0 N, what is the maximum 
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speed at which the puck can move before the cord breaks? 

Assume that the string remains horizontal during the motion. 

Solution
 

2

r

v T r
F T m , v

r m
   

 

The maximum speed corresponds to the maximum tension 

max
max

T r 50 1.5
v 12.2 m / s

m 0.5


    

What If? Suppose that the puck moves in a circle of larger 

radius at the same speed v.  Is the cord more likely to break or 

less likely? 

2v
T m

r
  

Same v and large r means smaller T, the string is less likely to 

break. 

 

Example 6.3 What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal 

road negotiates a curve, as shown in Figure. 

If the radius of the curve is 35.0 m and the 

coefficient of static friction between the 

tires and dry pavement is 0.523, find the 

maximum speed the car can have and still 

make the turn successfully. 

Solution 

The force that enables the car to remain in 

its circular path is the force of static 
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friction fs.  (Static because no slipping occurs at the point of 

contact between road and tires). If fs were zero— the car would 

continue in a straight line and 

Slide off the road.) 

 

The maximum speed to round the curve is the speed at which it 

is on the verge of skidding outward where fs is maximum at this 

moment: 

 
2

s ,max

v
f m

r
 ,        but         

2

s,max s s

v
f μ n μ mg m

r
    

 

s
max s

mgr
v gr 0.5 9.8 35 13.1m /s

m


        

 
What If? Suppose that a car travels this curve on a wet day and 

begins to skid on the curve when its speed reaches only 8.00 m/s. 

What can we say about the coefficient of static friction in this case? 

 

s for a wet road is smaller, since when the car skids: 

2 2 2

max max
s,max s s

v v 8
f μ mg m μ 0.187

r gr 9.8 35
     


 

Example 6.4 The Banked Roadway 

A civil engineer wishes to design a curved exit ramp for a highway 

in such a way that a car will not have to rely on friction to round 

the curve without skidding. In other words, a car moving at the 

designated speed can negotiate the curve even when the road is 

covered with ice. 

Such a ramp is usually banked; this means the roadway is tilted 

toward the inside of the curve. Suppose the designated speed for 
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x
n

mg

the ramp is to be 13.4 m/s (30.0 mi/h) and the radius of the curve 

is 35.0 m.  At what angle should the curve be banked? 

Solution 

On a level (unbanked) road 

static friction between car and 

the road causes the centripetal 

acceleration (previous example). 

For an icy road, Friction is no 

longer active. Car will skip out. 

Since the    road banked at an 

angle   to the horizontal, and 

static the force of static friction 

is (neglected) zero as in Figure, the only force that causes the 

centripetal acceleration and keeps the car moving in its circular 

curve is the horizontal component of the normal force N sin  

pointing toward the center of the curve. 

2

r

v
F  N sin m

r
    

          N cosθ mg       

2 2
1 ov 13.4

tan , tan 27.5
rg 35 9.8

    
     

 

If v > 13.4 friction is needed to keep the car from sliding up the 

bank. 

Example 6.5 Riding the Ferris Wheel 

A child of mass m rides on a Ferris wheel as shown in Figure 

6.6a. The child moves in a vertical circle of radius 10.0 m at a 

constant speed of 3.00 m/s. 

(A) Determine the force exerted by the seat on the child at the 

bottom of the ride. Express your answer in terms of the weight 

of the child, mg. 
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Solution 

(A) At the bottom (b):  Force 

exerted on the child are his 

weight downward, and the 

upward force by the seat nbot. 
2

r bot

v
F  n mg m

r
     

2 2

bot

v v
 n mg m mg(1 )

r rg
      

= 
2

3
mg(1 ) 1.09mg

10 ( 9.8 )
 


 

(B) Determine the force exerted by the seat on the child at the 

top of the ride (c). 

Solution 

At the top:           
2

r top

v
F  mg n m

r
     

2 2

top

v v
 n m mg mg(1 )

r rg
      

2
3

mg(1 ) 0.908 mg
(10 )( 9.8 )

    

6.2 Nonuniform Circular Motion 

If in a circular path the speed varies, in addition to the radial 

acceleration, there is a tangential acceleration having 

magnitude at = dv/dt. 

r t
 a a a     
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The net force have a tangential and a radial component. 

r t   
� � �

F F F  

When a force that has a tangential component acts on a particle 

moving in a circular path, the speed of the particle changes. 

Example 6.6 

Keep Your Eye on the Ball 

A small sphere of mass m is attached to the end of a cord of 

length R and set into motion in a vertical circle about a fixed 

point O, as illustrated in Figure.  Determine the tension in the 

cord at any instant when the speed of the sphere is v and the 

cord makes an angle  with the vertical. 

Solution 

At most points along the path the ball is affected by two forces:  

the gravitational force Fg = mg exerted by the Earth,  and the 

force T exerted by the cord. Fg has two components, tangential 

and  radial as shown in figure. 

r t   
� � �

F F F

r t
 a a a
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Tangential force: 

t tF mg sin ma ,    

t
a g sin  

Radial Force:   
2

r

v
F T mg cos m ,

R
     

2v
T m( g cos )

R
   

What If? What if we set the ball 

in motion with a slower speed? 

(A) What speed would the ball have as it passes over the top of 

the circle if the tension in the cord goes to zero instantaneously 

at this point? 

Answer Let us set the tension equal to zero in the expression 

for Ttop: 

At the top of the path, where
o180  , we have cos180o = -1, and 

the tension becomes       

2

top

top

v
T mg

R
   

2

top

top top

v
T m( g ) 0, v gR

R
      

 

(B) What if the ball is set in motion such that the speed at the top 

is less than this value? What happens? 

Answer In this case, the ball never reaches the top of the 

circle. At some point on the way up, the tension in the string 

goes to zero and the ball becomes a projectile. It follows a 

segment of a parabolic path over the top of its motion, rejoining 
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θ

O

s

mg

θ

θsinmg

mg cosθ

the circular path on the other side when the tension becomes 

nonzero again. 

 

Example: The Simple Pendulum 

 

Simple pendulum consists of small plumb bob of mass m 

swinging at the end of a light, inextensible string of length l 

along a circular arc defined by angle θ. The restoring force is the 

component of weight mg in the direction of increasing θ. 

 

 

(a) Radial Force:     
2

r

v
F T mg cos  m ,

R
     

 

(b) Tangential force:       

t t
F mg sin  m a ,     

t
a g sin   

 

Problem 6-18. One end of a cord is fixed and 

a small 0.500-kg object is attached to the 

other end, where it swings in a section of a 

vertical circle of radius 2.00 m as shown in 

Figure P6.18. When θ = 20o, the speed of the 

object is 8.00 m/s. At this instant, find (a) 

the tension in the string, (b) the tangential 

and radial components of acceleration, and 
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oθ=20

O

mg

θmgsinθ
mgcosθ

�

v

�

T

(c) the total acceleration.  (d) Is your answer changed if the 

object is swinging down toward its lowest point instead of 

swinging up?  (e) Explain your answer to part (d). 
------------------------------------------ 

(a) Radial Force:     

2

r

v
F  = T mgcos θ = m ,

R
                        

2

2

v
T m (g cos  )

R

64
  0.5 (10cos(20) ) 20. 7 m / s

2

  

  

 

(b) Tangential force:       
t t

F mg sin θ m a ,     

2

t
a g sin θ 10 sin(20) 3.42 m/s       

2 2

2

r

v 8
a 32 m/s

R 2
    

(c) 2 2 2a 32 ( 3.42) 1024 11.7 32.18  m/s       

(d)  No, it does not changed.  2

t
a 3.42 m/s   

(e) 
r

a  Always toward the center, 

2

t
a g sin θ 10 sin(20) 3.42 m/s       always perpendicular to 

v and ar. but reverse direction in the same as mgsinθ. 

----------------------------- 
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   الذاتية للمطالعة الامتحاناتمطلوبا في  ) ليسCh6( الفصلمن الجزء  هذا ما بعد
  غير مطلوبات 4.6+ 3.6اقصد   

6.3 Motion in Accelerated Frames 

 

Newton’s laws are valid only in inertial frames of reference. 

How Newton’s second law is applied by an observer in a 

noninertial frame of reference? 

 

A puck on a hocky table which is in a train moving with constant 

v, at rest remains at rest, and Newton’s first law is obeyed. 

 

An accelerating train is not an inertial frame. For an observer on 

the train, there appears to be no visible force on the puck, yet it 

accelerates from rest toward the back of the train, violating 

Newton’s first law. 

The force, which causes the puck to accelerate, is an apparent 

force called the fictitious force, because it is due to an 

accelerated reference frame. 

 

Another fictitious force is due to the 

change in the direction of the velocity 

vector (noninertial system) a car traveling 

along a highway at a high speed and 

approaching a curved exit ramp, as shown 

in Figure. As the car takes, the sharp left 

turn onto the ramp, a person sitting in the passenger seat slides to 

the right and hits the door. At that point, the force exerted by the 

door on the passenger keeps her from being ejected from the car. 

 

Incorrect explanation is that force acting toward the right pushes 

her out. The force often called the “centrifugal force,” but it is a 
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fictitious force due to the acceleration associated with the 

changing direction of the car’s velocity vector. (The driver also 

experiences this effect but wisely holds on to the steering wheel 

to keep from sliding to the right.) 

 

Correctly, explained as follows.  As the car enters the ramp and 

travels a curved path, the passenger tends to move along the 

original straight-line path. This is in accordance with Newton’s 

first law: the natural tendency of an object is to continue moving 

in a straight line. 

 

If the force of friction between her and the car seat is not large 

enough, she slides to the right as the seat turns to the left under 

her. Eventually, she encounters the door, which provides a force 

large enough to enable her to follow the same curved path as the 

car. She slides toward the door not because of an outward force 

but because the force of friction is not sufficiently great to allow 

her to travel along the circular path followed by the car. 

 

Fictitious force commonly called “centrifugal force” is described 

as a force pulling outward on an object moving in a circular path 

and occurs as a result of the noninertial reference frame. 

 

Another interesting fictitious force is the “Coriolis force.” This is 

an apparent force caused by changing the radial position of an 

object in a rotating coordinate system. 

 

For example, you and your friend sit at the edge of a rotating 

turntable. Viewed by an observer in an inertial reference frame 

attached to the Earth, you throw the ball in the direction of your 

friend. Later time the ball arrives at the other side of the 

turntable, your friend is no longer there to catch it. 
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According to this observer, the ball followed a straight line path, 

consistent with Newton’s laws. Viewed by your friend, the ball 

veers to one side during its flight. 

Your friend introduces a fictitious force to cause this deviation 

from the expected path. This fictitious force is called the 

“Coriolis force.” 

 

 

Example 6.8 Fictitious Forces in Linear Motion 

 

A small sphere of mass m is hung by a cord from the ceiling of a 

boxcar that is accelerating to the right, as shown in Figure.  The 

noninertial observer claims that a force, which we know to be 

fictitious, must act in order to cause the observed deviation of 

the cord from the vertical. How is the magnitude of this force  

related to the acceleration of the boxcar measured by the inertial 

observer? 

 

The inertial observer concludes that the acceleration of the 

sphere is the same as that of the boxcar which is provided by the 

horizontal component of T. Also, the vertical component of T 

balances the gravitational force because the sphere is in 

equilibrium in the vertical direction. 

 

In the inertial frame:  maT sin      and   mgT cos  
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According to the noninertial observer the sphere is at rest and so 

its acceleration is zero. Therefore, he introduces a fictitious force  

to balance the horizontal component of T 

 

In the noninertial frame: 0sin 
Fictitious

FT   

and   mgT cos  

Example 6.9 Fictitious Force in a Rotating System 

 

Suppose a 

block of mass 

m lying on a 

horizontal, 

frictionless 

turntable is 

connected to a 

string 

attached to the center of the turntable, as shown in Figure. How 

would each of the observers write Newton’s second law for the 

block. In the inertial frame:  
r

v
mT

2

      and   mgn   

According to the noninertial observer the block is at rest and so 

its acceleration is zero. Therefore, he introduces a fictitious force 

to balance the tension T. 

In the noninertial frame: 

 

0
Fictitious

FT      and   mgn   

 

6.4 Motion in the Presence of Resistive Forces 

 

The medium (liquid or gas) exerts a resistive force 

R on the object moving through it.  Some 

examples are the air resistance called air drag and 
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the viscous forces on objects moving through a liquid. 

 

The magnitude of R depends on factors such as the speed of the 

object increases 

with increasing speed. 

. 

Resistive Force Proportional to Object Speed 

 

bvR  ,  b is a constant. 

 

Consider A small sphere falling through a liquid. 

 

dt

dv
mmaRmg   

 

v
m

b
g

dt

dv

dt

dv
mbvmg   

Solution to the equation is: 

 

 /1)( t

T
evtv  , 

m

b
  is the time constant, e = 2.72         (the Euler number). 

Where vT is the terminal velocity and it is approached (not 

reached) after a time where a = 0 

 

b

mg
vbvmg

TT
 0  


