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22. Show that max
xj≤x≤xj+1

|g(x)| = h2/4, where g(x) = (x − jh)(x − (j + 1)h).

23. The Bernstein polynomial of degree n for f ∈ C[0, 1] is given by

Bn(x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k ,

where
( n

k

)
denotes n!/k!(n − k)!. These polynomials can be used in a constructive proof of the

Weierstrass Approximation Theorem 3.1 (see [Bart]) because lim
n→∞Bn(x) = f (x), for each x ∈ [0, 1].

a. Find B3(x) for the functions
i. f (x) = x ii. f (x) = 1

b. Show that for each k ≤ n, (
n− 1

k − 1

)
=
(

k

n

)(
n

k

)
.

c. Use part (b) and the fact, from (ii) in part (a), that

1 =
n∑

k=0

(
n

k

)
xk(1− x)n−k , for each n,

to show that, for f (x) = x2,

Bn(x) =
(

n− 1

n

)
x2 + 1

n
x.

d. Use part (c) to estimate the value of n necessary for
∣∣Bn(x)− x2

∣∣ ≤ 10−6 to hold for all x in
[0, 1].

3.2 Data Approximation and Neville’s Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now illustrate a practical application of interpolation in
such a situation.

Illustration Table 3.2 lists values of a function f at various points. The approximations to f (1.5)
obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

The most appropriate linear polynomial uses x0 = 1.3 and x1 = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 is

P1(1.5) = (1.5− 1.6)

(1.3− 1.6)
f (1.3)+ (1.5− 1.3)

(1.6− 1.3)
f (1.6)

= (1.5− 1.6)

(1.3− 1.6)
(0.6200860)+ (1.5− 1.3)

(1.6− 1.3)
(0.4554022) = 0.5102968.

Two polynomials of degree 2 can reasonably be used, one with x0 = 1.3, x1 = 1.6, and
x2 = 1.9, which gives
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118 C H A P T E R 3 Interpolation and Polynomial Approximation

P2(1.5) = (1.5− 1.6)(1.5− 1.9)

(1.3− 1.6)(1.3− 1.9)
(0.6200860)+ (1.5− 1.3)(1.5− 1.9)

(1.6− 1.3)(1.6− 1.9)
(0.4554022)

+ (1.5− 1.3)(1.5− 1.6)

(1.9− 1.3)(1.9− 1.6)
(0.2818186) = 0.5112857,

and one with x0 = 1.0, x1 = 1.3, and x2 = 1.6, which gives P̂2(1.5) = 0.5124715.
In the third-degree case, there are also two reasonable choices for the polynomial. One

with x0 = 1.3, x1 = 1.6, x2 = 1.9, and x3 = 2.2, which gives P3(1.5) = 0.5118302.
The second third-degree approximation is obtained with x0 = 1.0, x1 = 1.3, x2 = 1.6,

and x3 = 1.9, which gives P̂3(1.5) = 0.5118127. The fourth-degree Lagrange polynomial
uses all the entries in the table. With x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is P4(1.5) = 0.5118200.

Because P3(1.5), P̂3(1.5), and P4(1.5) all agree to within 2 × 10−5 units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

|P1(1.5)− f (1.5)| ≈ 1.53× 10−3,

|P2(1.5)− f (1.5)| ≈ 5.42× 10−4,

|P̂2(1.5)− f (1.5)| ≈ 6.44× 10−4,

|P3(1.5)− f (1.5)| ≈ 2.5× 10−6,

|P̂3(1.5)− f (1.5)| ≈ 1.50× 10−5,

|P4(1.5)− f (1.5)| ≈ 7.7× 10−6.

Although P3(1.5) is the most accurate approximation, if we had no knowledge of the actual
value of f (1.5), we would accept P4(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be
applied here because we have no knowledge of the fourth derivative of f . Unfortunately,
this is generally the case. �

Neville’s Method

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply,
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done in
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,
and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4 Let f be a function defined at x0, x1, x2, . . . , xn, and suppose that m1, m2, . . ., mk are k
distinct integers, with 0 ≤ mi ≤ n for each i. The Lagrange polynomial that agrees with
f (x) at the k points xm1 , xm2 , . . . , xmk is denoted Pm1,m2,...,mk (x).

Example 1 Suppose that x0 = 1, x1 = 2, x2 = 3, x3 = 4, x4 = 6, and f (x) = ex. Determine the
interpolating polynomial denoted P1,2,4(x), and use this polynomial to approximate f (5).
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3.2 Data Approximation and Neville’s Method 119

Solution This is the Lagrange polynomial that agrees with f (x) at x1 = 2, x2 = 3, and
x4 = 6. Hence

P1,2,4(x) = (x − 3)(x − 6)

(2− 3)(2− 6)
e2 + (x − 2)(x − 6)

(3− 2)(3− 6)
e3 + (x − 2)(x − 3)

(6− 2)(6− 3)
e6.

So

f (5) ≈ P(5) = (5− 3)(5− 6)

(2− 3)(2− 6)
e2 + (5− 2)(5− 6)

(3− 2)(3− 6)
e3 + (5− 2)(5− 3)

(6− 2)(6− 3)
e6

=− 1

2
e2 + e3 + 1

2
e6 ≈ 218.105.

The next result describes a method for recursively generating Lagrange polynomial
approximations.

Theorem 3.5 Let f be defined at x0, x1, . . . , xk , and let xj and xi be two distinct numbers in this set. Then

P(x) = (x − xj)P0,1,...,j−1,j+1,...,k(x)− (x − xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)

is the kth Lagrange polynomial that interpolates f at the k + 1 points x0, x1, . . . , xk .

Proof For ease of notation, let Q ≡ P0,1,...,i−1,i+1,...,k and Q̂ ≡ P0,1,...,j−1,j+1,...,k . Since Q(x)
and Q̂(x) are polynomials of degree k − 1 or less, P(x) is of degree at most k.

First note that Q̂(xi) = f (xi), implies that

P(xi) = (xi − xj)Q̂(xi)− (xi − xi)Q(xi)

xi − xj
= (xi − xj)

(xi − xj)
f (xi) = f (xi).

Similarly, since Q(xj) = f (xj), we have P(xj) = f (xj).
In addition, if 0 ≤ r ≤ k and r is neither i nor j, then Q(xr) = Q̂(xr) = f (xr). So

P(xr) = (xr − xj)Q̂(xr)− (xr − xi)Q(xr)

xi − xj
= (xi − xj)

(xi − xj)
f (xr) = f (xr).

But, by definition, P0,1,...,k(x) is the unique polynomial of degree at most k that agrees with
f at x0, x1, . . . , xk . Thus, P ≡ P0,1,...,k .

Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

P0,1 = 1

x1 − x0
[(x − x0)P1 − (x − x1)P0], P1,2 = 1

x2 − x1
[(x − x1)P2 − (x − x2)P1],

P0,1,2 = 1

x2 − x0
[(x − x0)P1,2 − (x − x2)P0,1],

and so on. They are generated in the manner shown in Table 3.3, where each row is completed
before the succeeding rows are begun.
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120 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.3 x0 P0

x1 P1 P0,1

x2 P2 P1,2 P0,1,2

x3 P3 P2,3 P1,2,3 P0,1,2,3

x4 P4 P3,4 P2,3,4 P1,2,3,4 P0,1,2,3,4

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points xi with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.

Eric Harold Neville (1889–1961)
gave this modification of the
Lagrange formula in a paper
published in 1932.[N]

To avoid the multiple subscripts, we let Qi,j(x), for 0 ≤ j ≤ i, denote the interpolating
polynomial of degree j on the (j + 1) numbers xi−j, xi−j+1, . . . , xi−1, xi; that is,

Qi,j = Pi−j,i−j+1,...,i−1,i.

Using this notation provides the Q notation array in Table 3.4.

Table 3.4 x0 P0 = Q0,0

x1 P1 = Q1,0 P0,1 = Q1,1

x2 P2 = Q2,0 P1,2 = Q2,1 P0,1,2 = Q2,2

x3 P3 = Q3,0 P2,3 = Q3,1 P1,2,3 = Q3,2 P0,1,2,3 = Q3,3

x4 P4 = Q4,0 P3,4 = Q4,1 P2,3,4 = Q4,2 P1,2,3,4 = Q4,3 P0,1,2,3,4 = Q4,4

Example 2 Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville’s method to
the data by constructing a recursive table of the form shown in Table 3.4.

Table 3.5

x f (x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

Solution Let x0 = 1.0, x1 = 1.3, x2 = 1.6, x3 = 1.9, and x4 = 2.2, then Q0,0 = f (1.0),
Q1,0 = f (1.3), Q2,0 = f (1.6), Q3,0 = f (1.9), and Q4,0 = f (2.2). These are the five
polynomials of degree zero (constants) that approximate f (1.5), and are the same as data
given in Table 3.5.

Calculating the first-degree approximation Q1,1(1.5) gives

Q1,1(1.5) = (x − x0)Q1,0 − (x − x1)Q0,0

x1 − x0

= (1.5− 1.0)Q1,0 − (1.5− 1.3)Q0,0

1.3− 1.0

= 0.5(0.6200860)− 0.2(0.7651977)

0.3
= 0.5233449.

Similarly,

Q2,1(1.5) = (1.5− 1.3)(0.4554022)− (1.5− 1.6)(0.6200860)

1.6− 1.3
= 0.5102968,

Q3,1(1.5) = 0.5132634, and Q4,1(1.5) = 0.5104270.
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3.2 Data Approximation and Neville’s Method 121

The best linear approximation is expected to be Q2,1 because 1.5 is between x1 = 1.3
and x2 = 1.6.

In a similar manner, approximations using higher-degree polynomials are given by

Q2,2(1.5) = (1.5− 1.0)(0.5102968)− (1.5− 1.6)(0.5233449)

1.6− 1.0
= 0.5124715,

Q3,2(1.5) = 0.5112857, and Q4,2(1.5) = 0.5137361.

The higher-degree approximations are generated in a similar manner and are shown in
Table 3.6.

Table 3.6 1.0 0.7651977
1.3 0.6200860 0.5233449
1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, Q4,4, was not sufficiently accurate, another node, x5, could
be selected, and another row added to the table:

x5 Q5,0 Q5,1 Q5,2 Q5,3 Q5,4 Q5,5.

Then Q4,4, Q5,4, and Q5,5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose

value at 2.5 is −0.0483838, and the next row of approximations to f (1.5) is

2.5 − 0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.
The NumericalAnalysis package in Maple can be used to apply Neville’s method for

the values of x and f (x) = y in Table 3.6. After loading the package we define the data
with

xy := [[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]]
Neville’s method using this data gives the approximation at x = 1.5 with the command

p3 := PolynomialInterpolation(xy, method = neville, extrapolate = [1.5])
The output from Maple for this command is

POLYINTERP([[1.0, 0.7651977], [1.3, 0.6200860], [1.6, 0.4554022], [1.9, 0.2818186]],
method = neville, extrapolate = [1.5], INFO)

which isn’t very informative. To display the information, we enter the command

NevilleTable(p3, 1.5)

and Maple returns an array with four rows and four columns. The nonzero entries corre-
sponding to the top four rows of Table 3.6 (with the first column deleted), the zero entries
are simply used to fill up the array.

To add the additional row to the table using the additional data (2.2, 0.1103623) we
use the command
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122 C H A P T E R 3 Interpolation and Polynomial Approximation

p3a := AddPoint(p3, [2.2, 0.1103623])
and a new array with all the approximation entries in Table 3.6 is obtained with

NevilleTable(p3a, 1.5)

Example 3 Table 3.7 lists the values of f (x) = ln x accurate to the places given. Use Neville’s method
and four-digit rounding arithmetic to approximatef (2.1) = ln 2.1 by completing the Neville
table.Table 3.7

i xi ln xi

0 2.0 0.6931
1 2.2 0.7885
2 2.3 0.8329

Solution Because x − x0 = 0.1, x − x1 = −0.1, x − x2 = −0.2, and we are given
Q0,0 = 0.6931, Q1,0 = 0.7885, and Q2,0 = 0.8329, we have

Q1,1 = 1

0.2
[(0.1)0.7885− (−0.1)0.6931] = 0.1482

0.2
= 0.7410

and

Q2,1 = 1

0.1
[(−0.1)0.8329− (−0.2)0.7885] = 0.07441

0.1
= 0.7441.

The final approximation we can obtain from this data is

Q2,1 = 1

0.3
[(0.1)0.7441− (−0.2)0.7410] = 0.2276

0.3
= 0.7420.

These values are shown in Table 3.8.

Table 3.8 i xi x − xi Qi0 Qi1 Qi2

0 2.0 0.1 0.6931
1 2.2 −0.1 0.7885 0.7410
2 2.3 −0.2 0.8329 0.7441 0.7420

In the preceding example we have f (2.1) = ln 2.1 = 0.7419 to four decimal places,
so the absolute error is

|f (2.1)− P2(2.1)| = |0.7419− 0.7420| = 10−4.

However, f ′(x) = 1/x, f ′′(x) = −1/x2, and f ′′′(x) = 2/x3, so the Lagrange error formula
(3.3) in Theorem 3.3 gives the error bound

|f (2.1)− P2(2.1)| =
∣∣∣∣f ′′′(ξ(2.1))

3! (x − x0)(x − x1)(x − x2)

∣∣∣∣
=
∣∣∣∣ 1

3 (ξ(2.1))3
(0.1)(−0.1)(−0.2)

∣∣∣∣ ≤ 0.002

3(2)3
= 8.3× 10−5.

Notice that the actual error, 10−4, exceeds the error bound, 8.3× 10−5. This apparent
contradiction is a consequence of finite-digit computations. We used four-digit rounding
arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This
caused our actual errors to exceed the theoretical error estimate.

• Remember: You cannot expect more accuracy than the arithmetic provides.

Algorithm 3.1 constructs the entries in Neville’s method by rows.
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ALGORITHM

3.1
Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n+ 1 distinct numbers x0, . . . , xn at the
number x for the function f :

INPUT numbers x, x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as the first column
Q0,0, Q1,0, . . . , Qn,0 of Q.

OUTPUT the table Q with P(x) = Qn,n.

Step 1 For i = 1, 2, . . . , n
for j = 1, 2, . . . , i

set Qi,j = (x − xi−j)Qi, j−1 − (x − xi)Qi−1, j−1

xi − xi−j
.

Step 2 OUTPUT (Q);
STOP.

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qi,i − Qi−1,i−1| < ε

can be used as a stopping criterion, where ε is a prescribed error tolerance. If the inequality is
true, Qi,i is a reasonable approximation to f (x). If the inequality is false, a new interpolation
point, xi+1, is added.

E X E R C I S E S E T 3.2

1. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (8.4) if f (8.1) = 16.94410, f (8.3) = 17.56492, f (8.6) = 18.50515, f (8.7) = 18.82091

b. f
(− 1

3

)
if f (−0.75) = −0.07181250, f (−0.5) = −0.02475000, f (−0.25) = 0.33493750,

f (0) = 1.10100000

c. f (0.25) if f (0.1) = 0.62049958, f (0.2) = −0.28398668, f (0.3) = 0.00660095, f (0.4) =
0.24842440

d. f (0.9) if f (0.6) = −0.17694460, f (0.7) = 0.01375227, f (0.8) = 0.22363362, f (1.0) =
0.65809197

2. Use Neville’s method to obtain the approximations for Lagrange interpolating polynomials of degrees
one, two, and three to approximate each of the following:

a. f (0.43) if f (0) = 1, f (0.25) = 1.64872, f (0.5) = 2.71828, f (0.75) = 4.48169

b. f (0) if f (−0.5) = 1.93750, f (−0.25) = 1.33203, f (0.25) = 0.800781, f (0.5) = 0.687500

c. f (0.18) if f (0.1) = −0.29004986, f (0.2) = −0.56079734, f (0.3) = −0.81401972, f (0.4) =
−1.0526302

d. f (0.25) if f (−1) = 0.86199480, f (−0.5) = 0.95802009, f (0) = 1.0986123, f (0.5) =
1.2943767

3. Use Neville’s method to approximate
√

3 with the following functions and values.

a. f (x) = 3x and the values x0 = −2, x1 = −1, x2 = 0, x3 = 1, and x4 = 2.

b. f (x) = √x and the values x0 = 0, x1 = 1, x2 = 2, x3 = 4, and x4 = 5.

c. Compare the accuracy of the approximation in parts (a) and (b).

4. Let P3(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Use Neville’s
method to find y if P3(1.5) = 0.
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5. Neville’s method is used to approximate f (0.4), giving the following table.

x0 = 0 P0 = 1
x1 = 0.25 P1 = 2 P01 = 2.6
x2 = 0.5 P2 P1,2 P0,1,2

x3 = 0.75 P3 = 8 P2,3 = 2.4 P1,2,3 = 2.96 P0,1,2,3 = 3.016

Determine P2 = f (0.5).

6. Neville’s method is used to approximate f (0.5), giving the following table.

x0 = 0 P0 = 0
x1 = 0.4 P1 = 2.8 P0,1 = 3.5
x2 = 0.7 P2 P1,2 P0,1,2 = 27

7

Determine P2 = f (0.7).

7. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = 2x + 1, P0,2(x) = x + 1, and P1,2,3(2.5) = 3.

Find P0,1,2,3(2.5).

8. Suppose xj = j, for j = 0, 1, 2, 3 and it is known that

P0,1(x) = x + 1, P1,2(x) = 3x − 1, and P1,2,3(1.5) = 4.

Find P0,1,2,3(1.5).

9. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was understated by 2 and f (1) was overstated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

10. Neville’s Algorithm is used to approximate f (0) using f (−2), f (−1), f (1), and f (2). Suppose
f (−1) was overstated by 2 and f (1) was understated by 3. Determine the error in the original
calculation of the value of the interpolating polynomial to approximate f (0).

11. Construct a sequence of interpolating values yn to f (1 + √10), where f (x) = (1 + x2)−1 for
−5 ≤ x ≤ 5, as follows: For each n = 1, 2, . . . , 10, let h = 10/n and yn = Pn(1+

√
10), where Pn(x)

is the interpolating polynomial for f (x) at the nodes x(n)0 , x(n)1 , . . . , x(n)n and x(n)j = −5 + jh, for each

j = 0, 1, 2, . . . , n. Does the sequence {yn} appear to converge to f (1+√10)?

Inverse Interpolation Suppose f ∈ C1[a, b], f ′(x) �= 0 on [a, b] and f has one zero p in [a, b].
Let x0, . . . , xn, be n + 1 distinct numbers in [a, b] with f (xk) = yk , for each k = 0, 1, . . . , n. To
approximate p construct the interpolating polynomial of degree n on the nodes y0, . . . , yn for f −1.
Since yk = f (xk) and 0 = f (p), it follows that f −1(yk) = xk and p = f −1(0). Using iterated
interpolation to approximate f −1(0) is called iterated inverse interpolation.

12. Use iterated inverse interpolation to find an approximation to the solution of x − e−x = 0, using the
data

x 0.3 0.4 0.5 0.6

e−x 0.740818 0.670320 0.606531 0.548812

13. Construct an algorithm that can be used for inverse interpolation.

3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.
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Suppose that Pn(x) is the nth Lagrange polynomial that agrees with the function f at
the distinct numbers x0, x1, . . . , xn. Although this polynomial is unique, there are alternate
algebraic representations that are useful in certain situations. The divided differences of f
with respect to x0, x1, . . . , xn are used to express Pn(x) in the form

Pn(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)+ · · · + an(x − x0) · · · (x − xn−1), (3.5)

for appropriate constants a0, a1, . . . , an. To determine the first of these constants, a0, note
that if Pn(x) is written in the form of Eq. (3.5), then evaluating Pn(x) at x0 leaves only the
constant term a0; that is,

a0 = Pn(x0) = f (x0).

Similarly, when P(x) is evaluated at x1, the only nonzero terms in the evaluation of
Pn(x1) are the constant and linear terms,

f (x0)+ a1(x1 − x0) = Pn(x1) = f (x1);

so

a1 = f (x1)− f (x0)

x1 − x0
. (3.6)

As in so many areas, Isaac
Newton is prominent in the study
of difference equations. He
developed interpolation formulas
as early as 1675, using his �
notation in tables of differences.
He took a very general approach
to the difference formulas, so
explicit examples that he
produced, including Lagrange’s
formulas, are often known by
other names.

We now introduce the divided-difference notation, which is related to Aitken’s �2

notation used in Section 2.5. The zeroth divided difference of the function f with respect
to xi, denoted f [xi], is simply the value of f at xi:

f [xi] = f (xi). (3.7)

The remaining divided differences are defined recursively; the first divided difference
of f with respect to xi and xi+1 is denoted f [xi, xi+1] and defined as

f [xi, xi+1] = f [xi+1] − f [xi]
xi+1 − xi

. (3.8)

The second divided difference, f [xi, xi+1, xi+2], is defined as

f [xi, xi+1, xi+2] = f [xi+1, xi+2] − f [xi, xi+1]
xi+2 − xi

.

Similarly, after the (k − 1)st divided differences,

f [xi, xi+1, xi+2, . . . , xi+k−1] and f [xi+1, xi+2, . . . , xi+k−1, xi+k],
have been determined, the kth divided difference relative to xi, xi+1, xi+2, . . . , xi+k is

f [xi, xi+1, . . . , xi+k−1, xi+k] = f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]
xi+k − xi

. (3.9)

The process ends with the single nth divided difference,

f [x0, x1, . . . , xn] = f [x1, x2, . . . , xn] − f [x0, x1, . . . , xn−1]
xn − x0

.

Because of Eq. (3.6) we can write a1 = f [x0, x1], just as a0 can be expressed as a0 =
f (x0) = f [x0]. Hence the interpolating polynomial in Eq. (3.5) is

Pn(x) = f [x0] + f [x0, x1](x − x0)+ a2(x − x0)(x − x1)

+ · · · + an(x − x0)(x − x1) · · · (x − xn−1).
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