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The easiest way to construct a fixed-point problem associated with a root-finding prob-
lem f (x) = 0 is to add or subtract a multiple of f (x) from x. Consider the sequence

pn = g( pn−1), for n ≥ 1,

for g in the form

g(x) = x − φ(x)f (x),
where φ is a differentiable function that will be chosen later.

For the iterative procedure derived from g to be quadratically convergent, we need to
have g′( p) = 0 when f ( p) = 0. Because

g′(x) = 1− φ′(x)f (x)− f ′(x)φ(x),
and f ( p) = 0, we have

g′( p) = 1− φ′( p)f ( p)− f ′( p)φ( p) = 1− φ′( p) · 0− f ′( p)φ( p) = 1− f ′( p)φ( p),

and g′( p) = 0 if and only if φ( p) = 1/f ′( p).
If we let φ(x) = 1/f ′(x), then we will ensure that φ( p) = 1/f ′( p) and produce the

quadratically convergent procedure

pn = g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
.

This, of course, is simply Newton’s method. Hence

• If f ( p) = 0 and f ′( p) �= 0, then for starting values sufficiently close to p, Newton’s
method will converge at least quadratically.

Multiple Roots

In the preceding discussion, the restriction was made that f ′( p) �= 0, where p is the solution
to f (x) = 0. In particular, Newton’s method and the Secant method will generally give
problems if f ′( p) = 0 when f ( p) = 0. To examine these difficulties in more detail, we
make the following definition.

Definition 2.10 A solution p of f (x) = 0 is a zero of multiplicity m of f if for x �= p, we can write
f (x) = (x − p)mq(x), where limx→p q(x) �= 0.

In essence, q(x) represents that portion of f (x) that does not contribute to the zero of
f . The following result gives a means to easily identify simple zeros of a function, those
that have multiplicity one.

For polynomials, p is a zero
of multiplicity m of f if
f (x) = (x − p)mq(x), where
q( p) �= 0.

Theorem 2.11 The function f ∈ C1[a, b] has a simple zero at p in (a, b) if and only if f ( p) = 0, but
f ′( p) �= 0.

Proof If f has a simple zero at p, then f ( p) = 0 and f (x) = (x − p)q(x), where
limx→p q(x) �= 0. Since f ∈ C1[a, b],

f ′( p) = lim
x→p

f ′(x) = lim
x→p
[q(x)+ (x − p)q′(x)] = lim

x→p
q(x) �= 0.

Conversely, if f ( p) = 0, but f ′( p) �= 0, expand f in a zeroth Taylor polynomial about p.
Then

f (x) = f ( p)+ f ′(ξ(x))(x − p) = (x − p)f ′(ξ(x)),
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2.4 Error Analysis for Iterative Methods 83

where ξ(x) is between x and p. Since f ∈ C1[a, b],
lim
x→p

f ′(ξ(x)) = f ′
(

lim
x→p

ξ(x)
)
= f ′( p) �= 0.

Letting q = f ′ ◦ ξ gives f (x) = (x− p)q(x), where limx→p q(x) �= 0. Thus f has a simple
zero at p.

The following generalization of Theorem 2.11 is considered in Exercise 12.

Theorem 2.12 The function f ∈ Cm[a, b] has a zero of multiplicity m at p in (a, b) if and only if

0 = f ( p) = f ′( p) = f ′′( p) = · · · = f (m−1)( p), but f (m)( p) �= 0.

The result in Theorem 2.12 implies that an interval about p exists where Newton’s
method converges quadratically to p for any initial approximation p0 = p, provided that p
is a simple zero. The following example shows that quadratic convergence might not occur
if the zero is not simple.

Example 1 Let f (x) = ex − x− 1. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that
Newton’s method with p0 = 1 converges to this zero but not quadratically.

Solution (a) We have

f (x) = ex − x − 1, f ′(x) = ex − 1 and f ′′(x) = ex,

so

f (0) = e0 − 0− 1 = 0, f ′(0) = e0 − 1 = 0 and f ′′(0) = e0 = 1.

Theorem 2.12 implies that f has a zero of multiplicity 2 at x = 0.

(b) The first two terms generated by Newton’s method applied to f with p0 = 1 are

p1 = p0 − f ( p0)

f ′( p0)
= 1− e− 2

e− 1
≈ 0.58198,

and

p2 = p1 − f ( p1)

f ′( p1)
≈ 0.58198− 0.20760

0.78957
≈ 0.31906.

The first sixteen terms of the sequence generated by Newton’s method are shown in Table
2.8. The sequence is clearly converging to 0, but not quadratically. The graph of f is shown
in Figure 2.12.

Table 2.8

n pn

0 1.0
1 0.58198
2 0.31906
3 0.16800
4 0.08635
5 0.04380
6 0.02206
7 0.01107
8 0.005545
9 2.7750× 10−3

10 1.3881× 10−3

11 6.9411× 10−4

12 3.4703× 10−4

13 1.7416× 10−4

14 8.8041× 10−5

15 4.2610× 10−5

16 1.9142× 10−6

Figure 2.12
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One method of handling the problem of multiple roots of a function f is to define

μ(x) = f (x)

f ′(x)
.

If p is a zero of f of multiplicity m with f (x) = (x − p)mq(x), then

μ(x) = (x − p)mq(x)

m(x − p)m−1q(x)+ (x − p)mq′(x)

= (x − p)
q(x)

mq(x)+ (x − p)q′(x)

also has a zero at p. However, q( p) �= 0, so

q( p)

mq( p)+ ( p− p)q′( p)
= 1

m
�= 0,

and p is a simple zero of μ(x). Newton’s method can then be applied to μ(x) to give

g(x) = x − μ(x)

μ′(x)
= x − f (x)/f ′(x)

{[f ′(x)]2 − [f (x)][f ′′(x)]}/[f ′(x)]2
which simplifies to

g(x) = x − f (x)f ′(x)
[f ′(x)]2 − f (x)f ′′(x) . (2.13)

If g has the required continuity conditions, functional iteration applied to g will be
quadratically convergent regardless of the multiplicity of the zero of f . Theoretically, the
only drawback to this method is the additional calculation of f ′′(x) and the more laborious
procedure of calculating the iterates. In practice, however, multiple roots can cause serious
round-off problems because the denominator of (2.13) consists of the difference of two
numbers that are both close to 0.

Example 2 In Example 1 it was shown that f (x) = ex − x− 1 has a zero of multiplicity 2 at x = 0 and
that Newton’s method with p0 = 1 converges to this zero but not quadratically. Show that the
modification of Newton’s method as given in Eq. (2.13) improves the rate of convergence.

Solution Modified Newton’s method gives

p1 = p0 − f ( p0)f
′( p0)

f ′( p0)2 − f ( p0)f ′′( p0)
= 1− (e− 2)(e− 1)

(e− 1)2 −( e− 2)e
≈ −2.3421061× 10−1.

This is considerably closer to 0 than the first term using Newton’s method, which was
0.58918. Table 2.9 lists the first five approximations to the double zero at x = 0. The results
were obtained using a system with ten digits of precision. The relative lack of improvement
in the last two entries is due to the fact that using this system both the numerator and the
denominator approach 0. Consequently there is a loss of significant digits of accuracy as
the approximations approach 0.

Table 2.9

n pn

1 −2.3421061× 10−1

2 −8.4582788× 10−3

3 −1.1889524× 10−5

4 −6.8638230× 10−6

5 −2.8085217× 10−7

The following illustrates that the modified Newton’s method converges quadratically
even when in the case of a simple zero.

Illustration In Section 2.2 we found that a zero of f (x) = x3 + 4x2 − 10 = 0 is p = 1.36523001.
Here we will compare convergence for a simple zero using both Newton’s method and the
modified Newton’s method listed in Eq. (2.13). Let
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(i) pn = pn−1 − p3
n−1 + 4p2

n−1 − 10

3p2
n−1 + 8pn−1

, from Newton’s method

and, from the Modified Newton’s method given by Eq. (2.13),

(ii) pn = pn−1 − ( p3
n−1 + 4p2

n−1 − 10)(3p2
n−1 + 8pn−1)

(3p2
n−1 + 8pn−1)2 − ( p3

n−1 + 4p2
n−1 − 10)(6pn−1 + 8)

.

With p0 = 1.5, we have

Newton’s method

p1 = 1.37333333, p2 = 1.36526201, and p3 = 1.36523001.

Modified Newton’s method

p1 = 1.35689898, p2 = 1.36519585, and p3 = 1.36523001.

Both methods are rapidly convergent to the actual zero, which is given by both methods as
p3. Note, however, that in the case of a simple zero the original Newton’s method requires
substantially less computation. �

Maple contains Modified Newton’s method as described in Eq. (2.13) in its Numerical-
Analysis package. The options for this command are the same as those for the Bisection
method. To obtain results similar to those in Table 2.9 we can use

with(Student[NumericalAnalysis])

f := ex − x − 1

ModifiedNewton
(
f , x = 1.0, tolerance = 10−10, output = sequence, maxiterations = 20

)
Remember that there is sensitivity to round-off error in these calculations, so you might

need to reset Digits in Maple to get the exact values in Table 2.9.

E X E R C I S E S E T 2.4

1. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.

a. x2 − 2xe−x + e−2x = 0, for 0 ≤ x ≤ 1

b. cos(x +√2)+ x(x/2+√2) = 0, for −2 ≤ x ≤ −1

c. x3 − 3x2(2−x)+ 3x(4−x)− 8−x = 0, for 0 ≤ x ≤ 1

d. e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3 = 0, for −1 ≤ x ≤ 0

2. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.

a. 1− 4x cos x + 2x2 + cos 2x = 0, for 0 ≤ x ≤ 1

b. x2 + 6x5 + 9x4 − 2x3 − 6x2 + 1 = 0, for −3 ≤ x ≤ −2

c. sin 3x + 3e−2x sin x − 3e−x sin 2x − e−3x = 0, for 3 ≤ x ≤ 4

d. e3x − 27x6 + 27x4ex − 9x2e2x = 0, for 3 ≤ x ≤ 5

3. Repeat Exercise 1 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 1?
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4. Repeat Exercise 2 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 2?

5. Use Newton’s method and the modified Newton’s method described in Eq. (2.13) to find a solution
accurate to within 10−5 to the problem

e6x + 1.441e2x − 2.079e4x − 0.3330 = 0, for − 1 ≤ x ≤ 0.

This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations.
Compare the solutions to the results in 1(d) and 2(d).

6. Show that the following sequences converge linearly to p = 0. How large must n be before |pn − p| ≤
5× 10−2?

a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

7. a. Show that for any positive integer k, the sequence defined by pn = 1/nk converges linearly to
p = 0.

b. For each pair of integers k and m, determine a number N for which 1/Nk < 10−m.

8. a. Show that the sequence pn = 10−2n
converges quadratically to 0.

b. Show that the sequence pn = 10−nk
does not converge to 0 quadratically, regardless of the size

of the exponent k > 1.

9. a. Construct a sequence that converges to 0 of order 3.

b. Suppose α > 1. Construct a sequence that converges to 0 zero of order α.

10. Suppose p is a zero of multiplicity m of f , where f (m) is continuous on an open interval containing
p. Show that the following fixed-point method has g′( p) = 0:

g(x) = x − mf (x)

f ′(x)
.

11. Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly
to 0.

12. Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.11 to show that f has
a zero of multiplicity m at p if and only if

0 = f ( p) = f ′( p) = · · · = f (m−1)( p), but f (m)( p) �= 0.

13. The iterative method to solve f (x) = 0, given by the fixed-point method g(x) = x, where

pn = g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
− f ′′( pn−1)

2f ′( pn−1)

[
f ( pn−1)

f ′( pn−1)

]2

, for n = 1, 2, 3, . . . ,

has g′( p) = g′′( p) = 0. This will generally yield cubic (α = 3) convergence. Expand the analysis of
Example 1 to compare quadratic and cubic convergence.

14. It can be shown (see, for example, [DaB], pp. 228–229) that if { pn}∞n=0 are convergent Secant
method approximations to p, the solution to f (x) = 0, then a constant C exists with |pn+1 − p| ≈
C |pn − p| |pn−1 − p| for sufficiently large values of n. Assume { pn} converges to p of order α, and
show that α = (1+√5)/2. (Note: This implies that the order of convergence of the Secant method
is approximately 1.62).

2.5 Accelerating Convergence

Theorem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We now
consider a technique called Aitken’s �2 method that can be used to accelerate the conver-
gence of a sequence that is linearly convergent, regardless of its origin or application.
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