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c. 3x2 − ex = 0, where g is the function in Exercise 12(c) of Section 2.2.

d. x − cos x = 0, where g is the function in Exercise 12(d) of Section 2.2.

13. The following sequences converge to 0. Use Aitken’s�2 method to generate {p̂n} until |p̂n| ≤ 5×10−2:

a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

14. A sequence { pn} is said to be superlinearly convergent to p if

lim
n→∞
| pn+1 − p|
| pn − p| = 0.

a. Show that if pn → p of order α for α > 1, then { pn} is superlinearly convergent to p.

b. Show that pn = 1
nn is superlinearly convergent to 0 but does not converge to 0 of order α for any

α > 1.

15. Suppose that { pn} is superlinearly convergent to p. Show that

lim
n→∞
| pn+1 − pn|
| pn − p| = 1.

16. Prove Theorem 2.14. [Hint: Let δn = ( pn+1 − p)/( pn − p)− λ, and show that limn→∞ δn = 0. Then
express (p̂n+1 − p)/( pn − p) in terms of δn, δn+1, and λ.]

17. Let Pn(x) be the nth Taylor polynomial for f (x) = ex expanded about x0 = 0.

a. For fixed x, show that pn = Pn(x) satisfies the hypotheses of Theorem 2.14.

b. Let x = 1, and use Aitken’s �2 method to generate the sequence p̂0, . . . , p̂8.

c. Does Aitken’s method accelerate convergence in this situation?

2.6 Zeros of Polynomials and Müller’s Method

A polynomial of degree n has the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where the ai’s, called the coefficients of P, are constants and an �= 0. The zero function,
P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree.

Algebraic Polynomials

Theorem 2.16 (Fundamental Theorem of Algebra)
If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then P(x) = 0
has at least one ( possibly complex) root.

Although the Fundamental Theorem of Algebra is basic to any study of elementary
functions, the usual proof requires techniques from the study of complex function theory.
The reader is referred to [SaS], p. 155, for the culmination of a systematic development of
the topics needed to prove the Theorem.

Example 1 Determine all the zeros of the polynomial P(x) = x3 − 5x2 + 17x − 13.

Solution It is easily verified that P(1) = 1− 5+ 17− 13 = 0. so x = 1 is a zero of P and
(x − 1) is a factor of the polynomial. Dividing P(x) by x − 1 gives

P(x) = (x − 1)(x2 − 4x + 13).
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92 C H A P T E R 2 Solutions of Equations in One Variable

To determine the zeros of x2 − 4x + 13 we use the quadratic formula in its standard form,
which gives the complex zeros

−(−4)±√(−4)2 − 4(1)(13)

2(1)
= 4±√−36

2
= 2± 3i.

Hence the third-degree polynomial P(x) has three zeros, x1 = 1, x2 = 2 − 3i, and
x2 = 2+ 3i.

Carl Friedrich Gauss
(1777–1855), one of the greatest
mathematicians of all time,
proved the Fundamental Theorem
of Algebra in his doctoral
dissertation and published it in
1799. He published different
proofs of this result throughout
his lifetime, in 1815, 1816, and as
late as 1848. The result had been
stated, without proof, by Albert
Girard (1595–1632), and partial
proofs had been given by Jean
d’Alembert (1717–1783), Euler,
and Lagrange.

In the preceding example we found that the third-degree polynomial had three distinct
zeros. An important consequence of the Fundamental Theorem of Algebra is the following
corollary. It states that this is always the case, provided that when the zeros are not distinct
we count the number of zeros according to their multiplicities.

Corollary 2.17 If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then there exist
unique constants x1, x2, . . ., xk , possibly complex, and unique positive integers m1, m2, . . .,
mk , such that

∑k
i=1 mi = n and

P(x) = an(x − x1)
m1(x − x2)

m2 · · · (x − xk)
mk .

By Corollary 2.17 the collection of zeros of a polynomial is unique and, if each zero
xi is counted as many times as its multiplicity mi, a polynomial of degree n has exactly n
zeros.

The following corollary of the Fundamental Theorem of Algebra is used often in this
section and in later chapters.

Corollary 2.18 Let P(x) and Q(x) be polynomials of degree at most n. If x1, x2, . . . , xk , with k > n, are
distinct numbers with P(xi) = Q(xi) for i = 1, 2, . . . , k, then P(x) = Q(x) for all values
of x.

This result implies that to show that two polynomials of degree less than or equal to n
are the same, we only need to show that they agree at n+ 1 values. This will be frequently
used, particularly in Chapters 3 and 8.

Horner’s Method

To use Newton’s method to locate approximate zeros of a polynomial P(x), we need to
evaluate P(x) and P′(x) at specified values. Since P(x) and P′(x) are both polynomials,
computational efficiency requires that the evaluation of these functions be done in the nested
manner discussed in Section 1.2. Horner’s method incorporates this nesting technique, and,
as a consequence, requires only n multiplications and n additions to evaluate an arbitrary
nth-degree polynomial.

William Horner (1786–1837) was
a child prodigy who became
headmaster of a school in Bristol
at age 18. Horner’s method for
solving algebraic equations
was published in 1819 in the
Philosophical Transactions of the
Royal Society.

Theorem 2.19 (Horner’s Method)
Let

P(x) = anxn + an−1xn−1 + · · · + a1x + a0.

Define bn = an and

bk = ak + bk+1x0, for k = n− 1, n− 2, . . . , 1, 0.
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2.6 Zeros of Polynomials and Müller’s Method 93

Then b0 = P(x0). Moreover, if

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

then

P(x) = (x − x0)Q(x)+ b0.

Paolo Ruffini (1765–1822) had
described a similar method which
won him the gold medal from the
Italian Mathematical Society for
Science. Neither Ruffini nor
Horner was the first to discover
this method; it was known in
China at least 500 years earlier.

Proof By the definition of Q(x),

(x − x0)Q(x)+ b0 = (x − x0)(bnxn−1 + · · · + b2x + b1)+ b0

= (bnxn + bn−1xn−1 + · · · + b2x2 + b1x)

− (bnx0xn−1 + · · · + b2x0x + b1x0)+ b0

= bnxn + (bn−1 − bnx0)x
n−1 + · · · + (b1 − b2x0)x + (b0 − b1x0).

By the hypothesis, bn = an and bk − bk+1x0 = ak , so

(x − x0)Q(x)+ b0 = P(x) and b0 = P(x0).

Example 2 Use Horner’s method to evaluate P(x) = 2x4 − 3x2 + 3x − 4 at x0 = −2.

Solution When we use hand calculation in Horner’s method, we first construct a table,
which suggests the synthetic division name that is often applied to the technique. For this
problem, the table appears as follows:

Coefficient Coefficient Coefficient Coefficient Constant
of x4 of x3 of x2 of x term

x0 = −2 a4 = 2 a3 = 0 a2 = −3 a1 = 3 a0 = −4
b4x0 = −4 b3x0 = 8 b2x0 = −10 b1x0 = 14

b4 = 2 b3 = −4 b2 = 5 b1 = −7 b0 = 10

So,

P(x) = (x + 2)(2x3 − 4x2 + 5x − 7)+ 10.
The word synthetic has its roots
in various languages. In standard
English it generally provides the
sense of something that is “false”
or “substituted”. But in
mathematics it takes the form of
something that is “grouped
together”. Synthetic geometry
treats shapes as whole, rather
than as individual objects, which
is the style in analytic geometry.
In synthetic division of
polynomials, the various powers
of the variables are not explicitly
given but kept grouped together.

An additional advantage of using the Horner (or synthetic-division) procedure is that,
since

P(x) = (x − x0)Q(x)+ b0,

where

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

differentiating with respect to x gives

P′(x) = Q(x)+ (x − x0)Q
′(x) and P′(x0) = Q(x0). (2.16)

When the Newton-Raphson method is being used to find an approximate zero of a polyno-
mial, P(x) and P′(x) can be evaluated in the same manner.
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94 C H A P T E R 2 Solutions of Equations in One Variable

Example 3 Find an approximation to a zero of

P(x) = 2x4 − 3x2 + 3x − 4,

using Newton’s method with x0 = −2 and synthetic division to evaluate P(xn) and P′(xn)

for each iterate xn.

Solution With x0 = −2 as an initial approximation, we obtained P(−2) in Example 1 by

x0 = −2 2 0 −3 3 −4
−4 8 −10 14

2 −4 5 −7 10 = P(−2).

Using Theorem 2.19 and Eq. (2.16),

Q(x) = 2x3 − 4x2 + 5x − 7 and P′(−2) = Q(−2),

so P′(−2) can be found by evaluating Q(−2) in a similar manner:

x0 = −2 2 −4 5 −7
−4 16 −42

2 −8 21 −49 = Q(−2) = P′(−2)

and

x1 = x0 − P(x0)

P′(x0)
= x0 − P(x0)

Q(x0)
= −2− 10

−49
≈ −1.796.

Repeating the procedure to find x2 gives

−1.796 2 0 −3 3 −4
−3.592 6.451 −6.197 5.742

2 −3.592 3.451 −3.197 1.742 = P(x1)

−3.592 12.902 −29.368

2 −7.184 16.353 −32.565 = Q(x1) = P′(x1).

So P(−1.796) = 1.742, P′(−1.796) = Q(−1.796) = −32.565, and

x2 = −1.796− 1.742

−32.565
≈ −1.7425.

In a similar manner, x3 = −1.73897, and an actual zero to five decimal places is−1.73896.
Note that the polynomial Q(x) depends on the approximation being used and changes

from iterate to iterate.

Algorithm 2.7 computes P(x0) and P′(x0) using Horner’s method.
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2.6 Zeros of Polynomials and Müller’s Method 95

ALGORITHM

2.7
Horner’s

To evaluate the polynomial

P(x) = anxn + an−1xn−1 + · · · + a1x + a0 = (x − x0)Q(x)+ b0

and its derivative at x0:

INPUT degree n; coefficients a0, a1, . . . , an; x0.

OUTPUT y = P(x0); z = P′(x0).

Step 1 Set y = an; (Compute bn for P.)
z = an. (Compute bn−1 for Q.)

Step 2 For j = n− 1, n− 2, . . . , 1
set y = x0y+ aj; (Compute bj for P.)

z = x0z + y. (Compute bj−1 for Q.)

Step 3 Set y = x0y+ a0. (Compute b0 for P.)

Step 4 OUTPUT (y, z);
STOP.

If the N th iterate, xN , in Newton’s method is an approximate zero for P, then

P(x) = (x − xN )Q(x)+ b0 = (x − xN )Q(x)+ P(xN ) ≈ (x − xN )Q(x),

so x − xN is an approximate factor of P(x). Letting x̂1 = xN be the approximate zero of P
and Q1(x) ≡ Q(x) be the approximate factor gives

P(x) ≈ (x − x̂1)Q1(x).

We can find a second approximate zero of P by applying Newton’s method to Q1(x).
If P(x) is an nth-degree polynomial with n real zeros, this procedure applied repeatedly

will eventually result in (n−2) approximate zeros of P and an approximate quadratic factor
Qn−2(x). At this stage, Qn−2(x) = 0 can be solved by the quadratic formula to find the last
two approximate zeros of P. Although this method can be used to find all the approximate
zeros, it depends on repeated use of approximations and can lead to inaccurate results.

The procedure just described is called deflation. The accuracy difficulty with deflation
is due to the fact that, when we obtain the approximate zeros of P(x), Newton’s method is
used on the reduced polynomial Qk(x), that is, the polynomial having the property that

P(x) ≈ (x − x̂1)(x − x̂2) · · · (x − x̂k)Qk(x).

An approximate zero x̂k+1 of Qk will generally not approximate a root of P(x) = 0 as well
as it does a root of the reduced equation Qk(x) = 0, and inaccuracy increases as k increases.
One way to eliminate this difficulty is to use the reduced equations to find approximations x̂2,
x̂3, . . . , x̂k to the zeros of P, and then improve these approximations by applying Newton’s
method to the original polynomial P(x).

Complex Zeros: Müller’s Method

One problem with applying the Secant, False Position, or Newton’s method to polynomials
is the possibility of the polynomial having complex roots even when all the coefficients are
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96 C H A P T E R 2 Solutions of Equations in One Variable

real numbers. If the initial approximation is a real number, all subsequent approximations
will also be real numbers. One way to overcome this difficulty is to begin with a complex
initial approximation and do all the computations using complex arithmetic. An alternative
approach has its basis in the following theorem.

Theorem 2.20 If z = a+bi is a complex zero of multiplicity m of the polynomial P(x)with real coefficients,
then z = a − bi is also a zero of multiplicity m of the polynomial P(x), and (x2 − 2ax +
a2 + b2)m is a factor of P(x).

A synthetic division involving quadratic polynomials can be devised to approximately
factor the polynomial so that one term will be a quadratic polynomial whose complex roots
are approximations to the roots of the original polynomial. This technique was described
in some detail in our second edition [BFR]. Instead of proceeding along these lines, we
will now consider a method first presented by D. E. Müller [Mu]. This technique can be
used for any root-finding problem, but it is particularly useful for approximating the roots
of polynomials.

Müller’s method is similar to the
Secant method. But whereas the
Secant method uses a line
through two points on the curve
to approximate the root, Müller’s
method uses a parabola through
three points on the curve for the
approximation.

The Secant method begins with two initial approximations p0 and p1 and determines
the next approximation p2 as the intersection of the x-axis with the line through ( p0, f ( p0))

and ( p1, f ( p1)). (See Figure 2.13(a).) Müller’s method uses three initial approximations,
p0, p1, and p2, and determines the next approximation p3 by considering the intersection
of the x-axis with the parabola through ( p0, f ( p0)), ( p1, f ( p1)), and ( p2, f ( p2)). (See
Figure 2.13(b).)

Figure 2.13

x x

y y

f f
p0 p1 p2p0 p1 p2 p3

(a) (b)

The derivation of Müller’s method begins by considering the quadratic polynomial

P(x) = a(x − p2)
2 + b(x − p2)+ c

that passes through ( p0, f ( p0)), ( p1, f ( p1)), and ( p2, f ( p2)). The constants a, b, and c
can be determined from the conditions

f ( p0) = a( p0 − p2)
2 + b( p0 − p2)+ c, (2.17)

f ( p1) = a( p1 − p2)
2 + b( p1 − p2)+ c, (2.18)

and

f ( p2) = a · 02 + b · 0+ c = c (2.19)
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2.6 Zeros of Polynomials and Müller’s Method 97

to be

c = f ( p2), (2.20)

b = ( p0 − p2)
2[f ( p1)− f ( p2)] − ( p1 − p2)

2[f ( p0)− f ( p2)]
( p0 − p2)( p1 − p2)( p0 − p1)

, (2.21)

and

a = ( p1 − p2)[f ( p0)− f ( p2)] − ( p0 − p2)[f ( p1)− f ( p2)]
( p0 − p2)( p1 − p2)( p0 − p1)

. (2.22)

To determine p3, a zero of P, we apply the quadratic formula to P(x) = 0. However, because
of round-off error problems caused by the subtraction of nearly equal numbers, we apply
the formula in the manner prescribed in Eq (1.2) and (1.3) of Section 1.2:

p3 − p2 = −2c

b±√b2 − 4ac
.

This formula gives two possibilities for p3, depending on the sign preceding the radical term.
In Müller’s method, the sign is chosen to agree with the sign of b. Chosen in this manner,
the denominator will be the largest in magnitude and will result in p3 being selected as the
closest zero of P to p2. Thus

p3 = p2 − 2c

b+ sgn(b)
√

b2 − 4ac
,

where a, b, and c are given in Eqs. (2.20) through (2.22).
Once p3 is determined, the procedure is reinitialized using p1, p2, and p3 in place of p0,

p1, and p2 to determine the next approximation, p4. The method continues until a satisfactory
conclusion is obtained. At each step, the method involves the radical

√
b2 − 4ac, so the

method gives approximate complex roots when b2 − 4ac < 0. Algorithm 2.8 implements
this procedure.

ALGORITHM

2.8
Müller’s

To find a solution to f (x) = 0 given three approximations, p0, p1, and p2:

INPUT p0, p1, p2; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f ( p1)− f ( p0))/h1;
δ2 = (f ( p2)− f ( p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = 3.

Step 2 While i ≤ N0 do Steps 3–7.

Step 3 b = δ2 + h2d;
D = (b2 − 4f ( p2)d)1/2. (Note: May require complex arithmetic.)

Step 4 If |b− D| < |b+ D| then set E = b+ D
else set E = b− D.

Step 5 Set h = −2f ( p2)/E;
p = p2 + h.
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98 C H A P T E R 2 Solutions of Equations in One Variable

Step 6 If |h| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 7 Set p0 = p1; (Prepare for next iteration.)
p1 = p2;
p2 = p;
h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f ( p1)− f ( p0))/h1;
δ2 = (f ( p2)− f ( p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = i + 1.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Illustration Consider the polynomial f (x) = x4 − 3x3 + x2 + x + 1, part of whose graph is shown in
Figure 2.14.

Figure 2.14
y

x

1

2

3

1 2 3

�1

�1

y � x  � 3x   � x  � x � 1 4 3 2

Three sets of three initial points will be used with Algorithm 2.8 and TOL = 10−5 to
approximate the zeros of f . The first set will use p0 = 0.5, p1 = −0.5, and p2 = 0. The
parabola passing through these points has complex roots because it does not intersect the
x-axis. Table 2.12 gives approximations to the corresponding complex zeros of f .

Table 2.12 p0 = 0.5, p1 = −0.5, p2 = 0
i pi f ( pi)

3 −0.100000+ 0.888819i −0.01120000+ 3.014875548i
4 −0.492146+ 0.447031i −0.1691201− 0.7367331502i
5 −0.352226+ 0.484132i −0.1786004+ 0.0181872213i
6 −0.340229+ 0.443036i 0.01197670− 0.0105562185i
7 −0.339095+ 0.446656i −0.0010550+ 0.000387261i
8 −0.339093+ 0.446630i 0.000000+ 0.000000i
9 −0.339093+ 0.446630i 0.000000+ 0.000000i
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2.6 Zeros of Polynomials and Müller’s Method 99

Table 2.13 gives the approximations to the two real zeros of f . The smallest of these uses
p0 = 0.5, p1 = 1.0, and p2 = 1.5, and the largest root is approximated when p0 = 1.5,
p1 = 2.0, and p2 = 2.5.

Table 2.13 p0 = 0.5, p1 = 1.0, p2 = 1.5 p0 = 1.5, p1 = 2.0, p2 = 2.5
i pi f ( pi) i pi f ( pi)

3 1.40637 −0.04851 3 2.24733 −0.24507
4 1.38878 0.00174 4 2.28652 −0.01446
5 1.38939 0.00000 5 2.28878 −0.00012
6 1.38939 0.00000 6 2.28880 0.00000

7 2.28879 0.00000

The values in the tables are accurate approximations to the places listed. �

We used Maple to generate the results in Table 2.12. To find the first result in the table,
define f (x) with

f := x→ x4 − 3x3 + x2 + x + 1

Then enter the initial approximations with

p0 := 0.5; p1 := −0.5; p2 := 0.0

and evaluate the function at these points with

f 0 := f ( p0); f 1 := f ( p1); f 2 := f ( p2)

To determine the coefficients a, b, c, and the approximate solution, enter

c := f 2;

b :=
(
( p0− p2)2 · (f 1− f 2)− ( p1− p2)2 · (f 0− f 2)

)
( p0− p2) · ( p1− p2) · ( p0− p1)

a := (( p1− p2) · (f 0− f 2)− ( p0− p2) · (f 1− f 2))

( p0− p2) · ( p1− p2) · ( p0− p1)

p3 := p2− 2c

b+
(

b
abs(b)

)√
b2 − 4a · c

This produces the final Maple output

−0.1000000000+ 0.8888194418I

and evaluating at this approximation gives f ( p3) as

−0.0112000001+ 3.014875548I

This is our first approximation, as seen in Table 2.12.
The illustration shows that Müller’s method can approximate the roots of polynomials

with a variety of starting values. In fact, Müller’s method generally converges to the root of a
polynomial for any initial approximation choice, although problems can be constructed for
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100 C H A P T E R 2 Solutions of Equations in One Variable

which convergence will not occur. For example, suppose that for some i we have f ( pi) =
f ( pi+1) = f ( pi+2) �= 0. The quadratic equation then reduces to a nonzero constant
function and never intersects the x-axis. This is not usually the case, however, and general-
purpose software packages using Müller’s method request only one initial approximation
per root and will even supply this approximation as an option.

E X E R C I S E S E T 2.6

1. Find the approximations to within 10−4 to all the real zeros of the following polynomials using
Newton’s method.

a. f (x) = x3 − 2x2 − 5

b. f (x) = x3 + 3x2 − 1

c. f (x) = x3 − x − 1

d. f (x) = x4 + 2x2 − x − 3

e. f (x) = x3 + 4.001x2 + 4.002x + 1.101

f. f (x) = x5 − x4 + 2x3 − 3x2 + x − 4

2. Find approximations to within 10−5 to all the zeros of each of the following polynomials by first
finding the real zeros using Newton’s method and then reducing to polynomials of lower degree to
determine any complex zeros.

a. f (x) = x4 + 5x3 − 9x2 − 85x − 136

b. f (x) = x4 − 2x3 − 12x2 + 16x − 40

c. f (x) = x4 + x3 + 3x2 + 2x + 2

d. f (x) = x5 + 11x4 − 21x3 − 10x2 − 21x − 5

e. f (x) = 16x4 + 88x3 + 159x2 + 76x − 240

f. f (x) = x4 − 4x2 − 3x + 5

g. f (x) = x4 − 2x3 − 4x2 + 4x + 4

h. f (x) = x3 − 7x2 + 14x − 6

3. Repeat Exercise 1 using Müller’s method.

4. Repeat Exercise 2 using Müller’s method.

5. Use Newton’s method to find, within 10−3, the zeros and critical points of the following functions.
Use this information to sketch the graph of f .

a. f (x) = x3 − 9x2 + 12 b. f (x) = x4 − 2x3 − 5x2 + 12x − 5

6. f (x) = 10x3 − 8.3x2 + 2.295x− 0.21141 = 0 has a root at x = 0.29. Use Newton’s method with an
initial approximation x0 = 0.28 to attempt to find this root. Explain what happens.

7. Use Maple to find a real zero of the polynomial f (x) = x3 + 4x − 4.

8. Use Maple to find a real zero of the polynomial f (x) = x3 − 2x − 5.

9. Use each of the following methods to find a solution in [0.1, 1] accurate to within 10−4 for

600x4 − 550x3 + 200x2 − 20x − 1 = 0.

a. Bisection method

b. Newton’s method

c. Secant method

d. method of False Position

e. Müller’s method
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2.6 Zeros of Polynomials and Müller’s Method 101

10. Two ladders crisscross an alley of width W . Each ladder reaches from the base of one wall to some
point on the opposite wall. The ladders cross at a height H above the pavement. Find W given that
the lengths of the ladders are x1 = 20 ft and x2 = 30 ft, and that H = 8 ft.

x1

x2

H

W

11. A can in the shape of a right circular cylinder is to be constructed to contain 1000 cm3. The circular
top and bottom of the can must have a radius of 0.25 cm more than the radius of the can so that the
excess can be used to form a seal with the side. The sheet of material being formed into the side of
the can must also be 0.25 cm longer than the circumference of the can so that a seal can be formed.
Find, to within 10−4, the minimal amount of material needed to construct the can.

r � 0.25

r

h

12. In 1224, Leonardo of Pisa, better known as Fibonacci, answered a mathematical challenge of John of
Palermo in the presence of Emperor Frederick II: find a root of the equation x3+ 2x2+ 10x = 20. He
first showed that the equation had no rational roots and no Euclidean irrational root—that is, no root

in any of the forms a±√b,
√

a±√b,
√

a±√b, or
√√

a±√b, where a and b are rational numbers.
He then approximated the only real root, probably using an algebraic technique of Omar Khayyam
involving the intersection of a circle and a parabola. His answer was given in the base-60 number
system as

1+ 22

(
1

60

)
+ 7

(
1

60

)2

+ 42

(
1

60

)3

+ 33

(
1

60

)4

+ 4

(
1

60

)5

+ 40

(
1

60

)6

.

How accurate was his approximation?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


