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The methods presented in Chapter 6 used direct techniques to solve a system of n× n
linear equations of the form Ax = b. In this chapter, we present iterative methods to solve
a system of this type.

7.1 Norms of Vectors and Matrices

In Chapter 2 we described iterative techniques for finding roots of equations of the form
f (x) = 0. An initial approximation (or approximations) was found, and new approximations
are then determined based on how well the previous approximations satisfied the equation.
The objective is to find a way to minimize the difference between the approximations and
the exact solution.

To discuss iterative methods for solving linear systems, we first need to determine a
way to measure the distance between n-dimensional column vectors. This will permit us to
determine whether a sequence of vectors converges to a solution of the system.

In actuality, this measure is also needed when the solution is obtained by the direct
methods presented in Chapter 6. Those methods required a large number of arithmetic
operations, and using finite-digit arithmetic leads only to an approximation to an actual
solution of the system.

A scalar is a real (or complex)
number generally denoted using
italic or Greek letters. Vectors are
denoted using boldface letters.

Vector Norms

Let R
n denote the set of all n-dimensional column vectors with real-number components.

To define a distance in R
n we use the notion of a norm, which is the generalization of the

absolute value on R, the set of real numbers.

Definition 7.1 A vector norm on R
n is a function, ‖ · ‖, from R

n into R with the following properties:

(i) ‖x‖ ≥ 0 for all x ∈ R
n,

(ii) ‖x‖ = 0 if and only if x = 0,

(iii) ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ R
n,

(iv) ‖x + y‖ ≤ ‖x‖ +‖y‖ for all x, y ∈ R
n.

Vectors in R
n are column vectors, and it is convenient to use the transpose notation

presented in Section 6.3 when a vector is represented in terms of its components. For
example, the vector

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦

will be written x = (x1, x2, . . . , xn)
t .

We will need only two specific norms on R
n, although a third norm on R

n is presented
in Exercise 2.

Definition 7.2 The l2 and l∞ norms for the vector x = (x1, x2, . . . , xn)
t are defined by

‖x‖2 =
{ n∑

i=1

x2
i

}1/2

and ‖x‖∞ = max
1≤i≤n
|xi|.
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7.1 Norms of Vectors and Matrices 433

Note that each of these norms reduces to the absolute value in the case n = 1.
The l2 norm is called the Euclidean norm of the vector x because it represents the

usual notion of distance from the origin in case x is in R
1 ≡ R, R

2, or R
3. For example, the

l2 norm of the vector x = (x1, x2, x3)
t gives the length of the straight line joining the points

(0, 0, 0) and (x1, x2, x3). Figure 7.1 shows the boundary of those vectors in R
2 and R

3 that
have l2 norm less than 1. Figure 7.2 is a similar illustration for the l∞ norm.

Figure 7.1
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434 C H A P T E R 7 Iterative Techniques in Matrix Algebra

Example 1 Determine the l2 norm and the l∞ norm of the vector x = (−1, 1,−2)t .

Solution The vector x = (−1, 1,−2)t in R
3 has norms

‖x‖2 =
√
(−1)2 + (1)2 + (−2)2 = √6

and

‖x‖∞ = max{| − 1|, |1|, | − 2|} = 2.

It is easy to show that the properties in Definition 7.1 hold for the l∞ norm because
they follow from similar results for absolute values. The only property that requires much
demonstration is (iv), and in this case if x = (x1, x2, . . . , xn)

t and y = (y1, y2, . . . , yn)
t , then

‖x + y‖∞ = max
1≤i≤n
|xi + yi| ≤ max

1≤i≤n
(|xi| + |yi|) ≤ max

1≤i≤n
|xi| + max

1≤i≤n
|yi| = ‖x‖∞ + ‖y‖∞.

The first three conditions also are easy to show for the l2 norm. But to show that

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2, for each x, y ∈ Rn,

we need a famous inequality.

Theorem 7.3 (Cauchy-Bunyakovsky-Schwarz Inequality for Sums)
For each x = (x1, x2, . . . , xn)

t and y = (y1, y2, . . . , yn)
t in R

n,

xty =
n∑

i=1

xiyi ≤
{

n∑
i=1

x2
i

}1/2 { n∑
i=1

y2
i

}1/2

= ‖x‖2 · ‖y‖2. (7.1)

There are many forms of this
inequality, hence many
discoverers. Augustin Louis
Cauchy (1789–1857) describes
this inequality in 1821 in Cours
d’Analyse Algébrique, the first
rigorous calculus book. An
integral form of the equality
appears in the work of Viktor
Yakovlevich Bunyakovsky
(1804–1889) in 1859, and
Hermann Amandus Schwarz
(1843–1921) used a double
integral form of this inequality in
1885. More details on the history
can be found in [Stee].

Proof If y = 0 or x = 0, the result is immediate because both sides of the inequality are
zero.

Suppose y 	= 0 and x 	= 0. Note that for each λ ∈ R we have

0 ≤ ||x − λy||22 =
n∑

i=1

(xi − λyi)
2 =

n∑
i=1

x2
i − 2λ

n∑
i=1

xiyi + λ2
n∑

i=1

y2
i ,

so that

2λ
n∑

i=1

xiyi ≤
n∑

i=1

x2
i + λ2

n∑
i=1

y2
i = ‖x‖2

2 + λ2‖y‖2
2.

However ‖x‖2 > 0 and ‖y‖2 > 0, so we can let λ = ‖x‖2/‖y‖2 to give

(
2
‖x‖2

‖y‖2

)(
n∑

i=1

xiyi

)
≤ ‖x‖2

2 +
‖x‖2

2

‖y‖2
2

‖y‖2
2 = 2‖x‖2

2.

Hence

2
n∑

i=1

xiyi ≤ 2‖x‖2
2
‖y‖2

‖x‖2
= 2‖x‖2‖y‖2,
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7.1 Norms of Vectors and Matrices 435

and

xty =
n∑

i=1

xiyi ≤ ‖x‖2‖y‖2 =
{ n∑

i=1

x2
i

}1/2{ n∑
i=1

y2
i

}1/2

.

With this result we see that for each x, y ∈ R
n,

‖x + y‖2
2 =

n∑
i=1

(xi + yi)
2 =

n∑
i=1

x2
i + 2

n∑
i=1

xiyi +
n∑

i=1

y2
i ≤ ‖x‖2

2 + 2‖x‖2‖y‖2 + ‖y‖2
2,

which gives norm property (iv):

‖x + y‖2 ≤
(‖x‖2

2 + 2‖x‖2‖y‖2 + ‖y‖2
2

)1/2 = ‖x‖2 + ‖y‖2.

Distance between Vectors in R
n

The norm of a vector gives a measure for the distance between an arbitrary vector and
the zero vector, just as the absolute value of a real number describes its distance from 0.
Similarly, the distance between two vectors is defined as the norm of the difference of the
vectors just as distance between two real numbers is the absolute value of their difference.

Definition 7.4 If x = (x1, x2, . . . , xn)
t and y = (y1, y2, . . . , yn)

t are vectors in R
n, the l2 and l∞ distances

between x and y are defined by

‖x − y‖2 =
{ n∑

i=1

(xi − yi)
2

}1/2

and ‖x − y‖∞ = max
1≤i≤n
|xi − yi|.

Example 2 The linear system

3.3330x1 + 15920x2 − 10.333x3 = 15913,

2.2220x1 + 16.710x2 + 9.6120x3 = 28.544,

1.5611x1 + 5.1791x2 + 1.6852x3 = 8.4254

has the exact solution x = (x1, x2, x3)
t = (1, 1, 1)t , and Gaussian elimination performed

using five-digit rounding arithmetic and partial pivoting (Algorithm 6.2), produces the
approximate solution

x̃ = (x̃1, x̃2, x̃3)
t = (1.2001, 0.99991, 0.92538)t .

Determine the l2 and l∞ distances between the exact and approximate solutions.

Solution Measurements of x − x̃ are given by

‖x − x̃‖∞ = max{|1− 1.2001|, |1− 0.99991|, |1− 0.92538|}
= max{0.2001, 0.00009, 0.07462} = 0.2001

and

‖x − x̃‖2 =
[
(1− 1.2001)2 + (1− 0.99991)2 + (1− 0.92538)2

]1/2

= [(0.2001)2 + (0.00009)2 + (0.07462)2]1/2 = 0.21356.

Although the components x̃2 and x̃3 are good approximations to x2 and x3, the component
x̃1 is a poor approximation to x1, and |x1 − x̃1| dominates both norms.
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436 C H A P T E R 7 Iterative Techniques in Matrix Algebra

The concept of distance in R
n is also used to define a limit of a sequence of vectors in

this space.

Definition 7.5 A sequence {x(k)}∞k=1 of vectors in R
n is said to converge to x with respect to the norm ‖ · ‖

if, given any ε > 0, there exists an integer N(ε) such that

‖x(k) − x‖ < ε, for all k ≥ N(ε).

Theorem 7.6 The sequence of vectors {x(k)} converges to x in R
n with respect to the l∞ norm if and only

if limk→∞ x(k)i = xi, for each i = 1, 2, . . . , n.

Proof Suppose {x(k)} converges to x with respect to the l∞ norm. Given any ε > 0, there
exists an integer N(ε) such that for all k ≥ N(ε),

max
i=1,2,...,n

|x(k)i − xi| = ‖x(k) − x‖∞ < ε.

This result implies that |x(k)i − xi| < ε, for each i = 1, 2, . . . , n, so limk→∞ x(k)i = xi for
each i.

Conversely, suppose that limk→∞ x(k)i = xi, for every i = 1, 2, . . . , n. For a given ε > 0,
let Ni(ε) for each i represent an integer with the property that

|x(k)i − xi| < ε,

whenever k ≥ Ni(ε).
Define N(ε) = maxi=1,2,...,n Ni(ε). If k ≥ N(ε), then

max
i=1,2,...,n

|x(k)i − xi| = ‖x(k) − x‖∞ < ε.

This implies that {x(k)} converges to x with respect to the l∞ norm.

Example 3 Show that

x(k) = (x(k)1 , x(k)2 , x(k)3 , x(k)4 )t =
(

1, 2+ 1

k
,

3

k2
, e−k sin k

)t

.

converges to x = (1, 2, 0, 0)t with respect to the l∞ norm.

Solution Because

lim
k→∞

1 = 1, lim
k→∞

(2+ 1/k) = 2, lim
k→∞

3/k2 = 0 and lim
k→∞

e−k sin k = 0,

Theorem 7.6 implies that the sequence {x(k)} converges to (1, 2, 0, 0)t with respect to the
l∞ norm.

To show directly that the sequence in Example 3 converges to (1, 2, 0, 0)t with respect
to the l2 norm is quite complicated. It is better to prove the next result and apply it to this
special case.

Theorem 7.7 For each x ∈ R
n,

‖x‖∞ ≤ ‖x‖2 ≤ √n‖x‖∞.
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Proof Let xj be a coordinate of x such that ‖x‖∞ = max1≤i≤n |xi| = |xj|. Then

‖x‖2
∞ = |xj|2 = x2

j ≤
n∑

i=1

x2
i = ‖x‖2

2,

and

‖x‖∞ ≤ ‖x‖2.

So

‖x‖2
2 =

n∑
i=1

x2
i ≤

n∑
i=1

x2
j = nx2

j = n||x||2∞,

and ‖x‖2 ≤ √n‖x‖∞.

Figure 7.3 illustrates this result when n = 2.

Figure 7.3
x2
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�x �2 � 1

�1 1
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2

2
√

Example 4 In Example 3, we found that the sequence {x(k)}, defined by

x(k) =
(

1, 2+ 1

k
,

3

k2
, e−k sin k

)t

,

converges to x = (1, 2, 0, 0)t with respect to the l∞ norm. Show that this sequence also
converges to x with respect to the l2 norm.

Solution Given any ε > 0, there exists an integer N(ε/2) with the property that

‖x(k) − x‖∞ < ε

2
,

whenever k ≥ N(ε/2). By Theorem 7.7, this implies that

‖x(k) − x‖2 ≤
√

4‖x(k) − x‖∞ ≤ 2(ε/2) = ε,
when k ≥ N(ε/2). So {x(k)} also converges to x with respect to the l2 norm.
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438 C H A P T E R 7 Iterative Techniques in Matrix Algebra

It can be shown that all norms on R
n are equivalent with respect to convergence; that

is, if ‖ · ‖ and ‖ · ‖′ are any two norms on R
n and {x(k)}∞k=1 has the limit x with respect to

‖ · ‖, then {x(k)}∞k=1 also has the limit x with respect to ‖ · ‖′ . The proof of this fact for the
general case can be found in [Or2], p. 8. The case for the l2 and l∞ norms follows from
Theorem 7.7.

Matrix Norms and Distances

In the subsequent sections of this and later chapters, we will need methods for determining
the distance between n× n matrices. This again requires the use of a norm.

Definition 7.8 A matrix norm on the set of all n× n matrices is a real-valued function, ‖ · ‖, defined on
this set, satisfying for all n× n matrices A and B and all real numbers α:

(i) ‖A‖ ≥ 0;

(ii) ‖A‖ = 0, if and only if A is O, the matrix with all 0 entries;

(iii) ‖αA‖ = |α|‖A‖;
(iv) ‖A+ B‖ ≤ ‖A‖ + ‖B‖;
(v) ‖AB‖ ≤ ‖A‖‖B‖.

The distance between n × n matrices A and B with respect to this matrix norm is
‖A− B‖.

Although matrix norms can be obtained in various ways, the norms considered most
frequently are those that are natural consequences of the vector norms l2 and l∞.

These norms are defined using the following theorem, whose proof is considered in
Exercise 13.

Theorem 7.9 If || · || is a vector norm on R
n, then

‖A‖ = max
‖x‖=1
‖Ax‖ (7.2)

is a matrix norm.

Matrix norms defined by vector norms are called the natural, or induced, matrix norm
associated with the vector norm. In this text, all matrix norms will be assumed to be natural
matrix norms unless specified otherwise.

Every vector norm produces an
associated natural matrix norm.

For any z 	= 0, the vector x = z/‖z‖ is a unit vector. Hence

max
‖x‖=1
‖Ax‖ = max

z 	=0

∥∥∥∥A

(
z
‖z‖

)∥∥∥∥ = max
z 	=0

‖Az‖
‖z‖ ,

and we can alternatively write

‖A‖ = max
z 	=0

‖Az‖
‖z‖ . (7.3)

The following corollary to Theorem 7.9 follows from this representation of ‖A‖.

Corollary 7.10 For any vector z 	= 0, matrix A, and any natural norm ‖ · ‖, we have

‖Az‖ ≤ ‖A‖ · ‖z‖.
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7.1 Norms of Vectors and Matrices 439

The measure given to a matrix under a natural norm describes how the matrix stretches
unit vectors relative to that norm. The maximum stretch is the norm of the matrix. The
matrix norms we will consider have the forms

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞, the l∞ norm,

and ‖A‖2 = max
‖x‖2=1

‖Ax‖2, the l2 norm.

An illustration of these norms when n = 2 is shown in Figures 7.4 and 7.5 for the
matrix

A =
[

0 −2
2 0

]

Figure 7.4
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440 C H A P T E R 7 Iterative Techniques in Matrix Algebra

The l∞ norm of a matrix can be easily computed from the entries of the matrix.

Theorem 7.11 If A = (ai j) is an n× n matrix, then

‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai j|.

Proof First we show that ‖A‖∞ ≤ max
1≤i≤n

n∑
j=1

|ai j|.
Let x be an n-dimensional vector with 1 = ‖x‖∞ = max1≤i≤n |xi|. Since Ax is also an

n-dimensional vector,

‖Ax‖∞ = max
1≤i≤n
|(Ax)i| = max

1≤i≤n

∣∣∣∣∣∣
n∑

j=1

ai jxj

∣∣∣∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|ai j| max
1≤ j≤n

|xj|.

But max1≤ j≤n |xj| = ‖x‖∞ = 1, so

‖Ax‖∞ ≤ max
1≤i≤n

n∑
j=1

|ai j|,

and consequently,

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≤ max
1≤i≤n

n∑
j=1

|ai j|. (7.4)

Now we will show the opposite inequality. Let p be an integer with

n∑
j=1

|apj| = max
1≤i≤n

n∑
j=1

|ai j|,

and x be the vector with components

xj =
{

1, if apj ≥ 0,

−1, if apj < 0.

Then ‖x‖∞ = 1 and apjxj = |apj|, for all j = 1, 2, . . . , n, so

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

ai jxj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

n∑
j=1

apjxj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=1

|apj|
∣∣∣∣∣∣ = max

1≤i≤n

n∑
j=1

|ai j|.

This result implies that

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≥ max
1≤i≤n

n∑
j=1

|ai j|.

Putting this together with Inequality (7.4) gives ‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai j|.
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7.1 Norms of Vectors and Matrices 441

Example 5 Determine ‖A‖∞ for the matrix

A =
⎡
⎣ 1 2 −1

0 3 −1
5 −1 1

⎤
⎦ .

Solution We have

3∑
j=1

|a1j| = |1| + |2| + | − 1| = 4,
3∑

j=1

|a2j| = |0| + |3| + | − 1| = 4,

and

3∑
j=1

|a3j| = |5| + | − 1| + |1| = 7.

So Theorem 7.11 implies that ‖A‖∞ = max{4, 4, 7} = 7.

In the next section, we will discover an alternative method for finding the l2 norm of a
matrix.

E X E R C I S E S E T 7.1

1. Find l∞ and l2 norms of the vectors.

a. x = (3,−4, 0, 3
2 )

t

b. x = (2, 1,−3, 4)t

c. x = (sin k, cos k, 2k)t for a fixed positive integer k

d. x = (4/(k + 1), 2/k2, k2e−k)t for a fixed positive integer k

2. a. Verify that the function ‖ · ‖1, defined on R
n by

‖x‖1 =
n∑

i=1

|xi|,

is a norm on R
n.

b. Find ‖x‖1 for the vectors given in Exercise 1.

c. Prove that for all x ∈ R
n, ‖x‖1 ≥ ‖x‖2.

3. Prove that the following sequences are convergent, and find their limits.

a. x(k) = (1/k, e1−k ,−2/k2)t

b. x(k) = (
e−k cos k, k sin(1/k), 3+ k−2

)t

c. x(k) = (ke−k2
, (cos k)/k,

√
k2 + k − k)t

d. x(k) = (e1/k , (k2 + 1)/(1− k2), (1/k2)(1+ 3+ 5+ · · · + (2k − 1)))t

4. Find the l∞ norm of the matrices.

a.
[

10 15
0 1

]
b.

[
10 0
15 1

]

c.

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦ d.

⎡
⎣ 4 −1 7
−1 4 0
−7 0 4

⎤
⎦
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5. The following linear systems Ax = b have x as the actual solution and x̃ as an approximate solution.
Compute ‖x − x̃‖∞ and ‖Ax̃ − b‖∞.

a. 1
2 x1 + 1

3 x2 = 1
63 ,

1
3 x1 + 1

4 x2 = 1
168 ,

x = (
1
7 ,− 1

6

)t
,

x̃ = (0.142,−0.166)t .

b. x1 + 2x2 + 3x3 = 1,

2x1 + 3x2 + 4x3 = −1,

3x1 + 4x2 + 6x3 = 2,

x = (0,−7, 5)t ,

x̃ = (−0.33,−7.9, 5.8)t .

c. x1 + 2x2 + 3x3 = 1,

2x1 + 3x2 + 4x3 = −1,

3x1 + 4x2 + 6x3 = 2,

x = (0,−7, 5)t ,

x̃ = (−0.2,−7.5, 5.4)t .

d. 0.04x1 + 0.01x2 − 0.01x3 = 0.06,

0.2x1 + 0.5x2 − 0.2x3 = 0.3,

x1 + 2x2 + 4x3 = 11,

x = (1.827586, 0.6551724, 1.965517)t ,

x̃ = (1.8, 0.64, 1.9)t .

6. The matrix norm ‖ · ‖1, defined by ‖A‖1 = max
‖x‖1=1

‖Ax‖1, can be computed using the formula

‖A‖1 = max
1≤ j≤n

n∑
i=1

|ai j|,

where the vector norm ‖ · ‖1 is defined in Exercise 2. Find ‖ · ‖1 for the matrices in Exercise 4.

7. Show by example that ‖ · ‖�∞ , defined by ‖A‖�∞ = max
1≤i, j≤n

|ai j|, does not define a matrix norm.

8. Show that ‖ · ‖①, defined by

‖A‖① =
n∑

i=1

n∑
j=1

|ai j|,

is a matrix norm. Find ‖ · ‖① for the matrices in Exercise 4.

9. a. The Frobenius norm (which is not a natural norm) is defined for an n× n matrix A by

‖A‖F =
⎛
⎝ n∑

i=1

n∑
j=1

|ai j|2
⎞
⎠

1/2

.

Show that ‖ · ‖F is a matrix norm.

b. Find ‖ · ‖F for the matrices in Exercise 4.

c. For any matrix A, show that ‖A‖2 ≤ ‖A‖F ≤ n1/2‖A‖2.

10. In Exercise 9 the Frobenius norm of a matrix was defined. Show that for any n×n matrix A and vector
x in R

n, ‖Ax‖2 ≤ ‖A‖F‖x‖2.

11. Let S be a positive definite n × n matrix. For any x in R
n define ‖x‖ = (xtSx)1/2. Show that this

defines a norm on R
n. [Hint: Use the Cholesky factorization of S to show that xtSy = ytSx ≤

(xtSx)1/2(ytSy)1/2.]

12. Let S be a real and nonsingular matrix, and let ‖ · ‖ be any norm on R
n. Define ‖ · ‖′ by ‖x‖′ = ‖Sx‖.

Show that ‖ · ‖′ is also a norm on R
n.

13. Prove that if ‖ · ‖ is a vector norm on R
n, then ‖A‖ = max‖x‖=1 ‖Ax‖ is a matrix norm.

14. The following excerpt from the Mathematics Magazine [Sz] gives an alternative way to prove the
Cauchy-Buniakowsky-Schwarz Inequality.

a. Show that when x 	= 0 and y 	= 0, we have

∑n
i=1 xiyi(∑n

i=1 x2
i

)1/2 (∑n
i=1 y2

i

)1/2 = 1− 1

2

n∑
i=1

⎛
⎜⎝ xi(∑n

j=1 x2
j

)1/2 −
yi(∑n

j=1 y2
j

)1/2

⎞
⎟⎠

2

.
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