Equilibrium of a
Rigid Body

CHAPTER OBJECTIVES

m To develop the equations of equilibrium for a rigid body.
m To introduce the concept of the free-body diagram for a rigid body.

m To show how to solve rigid-body equilibrium problems using the
equations of equilibrium.

5.1 Conditions for Rigid-Body Equilibrium

In this section, we will develop both the necessary and sufficient conditions
for the equilibrium of the rigid body in Fig. 5-1a. As shown, this body is
subjected to an external force and couple moment system that is the result
of the effects of gravitational, electrical, magnetic, or contact forces caused
by adjacent bodies. The internal forces caused by interactions between
particles within the body are not shown in this figure because these forces
occur in equal but opposite collinear pairs and hence will cancel out, a
consequence of Newton’s third law.
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F,

(b)

Using the methods of the previous chapter, the force and couple
moment system acting on a body can be reduced to an equivalent
resultant force and resultant couple moment at any arbitrary point O on
or off the body, Fig. 5-1b. If this resultant force and couple moment are
both equal to zero, then the body is said to be in equilibrium.
Mathematically, the equilibrium of a body is expressed as

Fr,=2F =0
(5-1)
Mg)o = M, = 0

The first of these equations states that the sum of the forces acting on the
body is equal to zero. The second equation states that the sum of the
moments of all the forces in the system about point O, added to all
the couple moments, is equal to zero. These two equations are not only
necessary for equilibrium, they are also sufficient. To show this, consider
summing moments about some other point, such as point A in Fig. 5-1c.
We require

EMA:I'XFR'i_(MR)O:O

Since r # 0, this equation is satisfied if Eqgs. 5-1 are satisfied, namely
Fz = 0 and M), = 0.

When applying the equations of equilibrium, we will assume that the
body remains rigid. In reality, however, all bodies deform when subjected
to loads. Although this is the case, most engineering materials such as
steel and concrete are very rigid and so their deformation is usually
very small. Therefore, when applying the equations of equilibrium, we
can generally assume that the body will remain rigid and not deform
under the applied load without introducing any significant error.
This way the direction of the applied forces and their moment arms
with respect to a fixed reference remain the same both before and after
the body is loaded.

EQUILIBRIUM IN TWO DIMENSIONS

In the first part of the chapter, we will consider the case where the force
system acting on a rigid body lies in or may be projected onto a single
plane and, furthermore, any couple moments acting on the body are
directed perpendicular to this plane. This type of force and couple system
is often referred to as a two-dimensional or coplanar force system. For
example, the airplane in Fig. 5-2 has a plane of symmetry through its
center axis, and so the loads acting on the airplane are symmetrical with
respect to this plane. Thus, each of the two wing tires will support the same
load T, which is represented on the side (two-dimensional) view of the
plane as 2T.



5.2 Free-Body Diagrams

Successful application of the equations of equilibrium requires a complete
specification of all the known and unknown external forces that act on
the body. The best way to account for these forces is to draw a free-body
diagram. This diagram is a sketch of the outlined shape of the body, which
represents it as being isolated or “free” from its surroundings, i.e., a “free
body.” On this sketch it is necessary to show all the forces and couple
moments that the surroundings exert on the body so that these effects can
be accounted for when the equations of equilibrium are applied. A
thorough understanding of how to draw a free-body diagram is of primary
importance for solving problems in mechanics.

Support Reactions. Before presenting a formal procedure as to
how to draw a free-body diagram, we will first consider the various types
of reactions that occur at supports and points of contact between bodies
subjected to coplanar force systems. As a general rule,

® If a support prevents the translation of a body in a given direction,
then a force is developed on the body in that direction.

® Ifrotation is prevented, a couple moment is exerted on the body.

For example, let us consider three ways in which a horizontal member,
such as a beam, is supported at its end. One method consists of a roller or
cylinder, Fig. 5-3a. Since this support only prevents the beam from
translating in the vertical direction, the roller will only exert a force on
the beam in this direction, Fig. 5-3b.

The beam can be supported in a more restrictive manner by using a
pin, Fig. 5-3c. The pin passes through a hole in the beam and two leaves
which are fixed to the ground. Here the pin can prevent translation of the
beam in any direction ¢, Fig. 5-3d, and so the pin must exert a force F on
the beam in this direction. For purposes of analysis, it is generally easier
to represent this resultant force F by its two rectangular components F,
and F,, Fig. 5-3e.If F, and F, are known, then F and ¢ can be calculated.

The most restrictive way to support the beam would be to use a fixed
support as shown in Fig. 5-3f. This support will prevent both translation
and rotation of the beam. To do this a force and couple moment must be
developed on the beam at its point of connection, Fig. 5-3g. As in the
case of the pin, the force is usually represented by its rectangular
components F, and F,.

Table 5-1 lists other common types of supports for bodies subjected to
coplanar force systems. (In all cases the angle 6 is assumed to be known.)
Carefully study each of the symbols used to represent these supports and
the types of reactions they exert on their contacting members.

=I5
roller
F
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Types of Connection Reaction Number of Unknowns

(1)
0 0, One unknown. The reaction is a tension force which acts
F away from the member in the direction of the cable.
cable
@)
'I?VJN o or o One unknown. The reaction is a force which acts along
o the axis of the link.
F F
weightless link
(©)
/ One unknown. The reaction is a force which acts
o perpendicular to the surface at the point of contact.
o&' q ()
roller F
4)
9 One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.
F

rocker

One unknown. The reaction is a force which acts
0 0 perpendicular to the surface at the point of contact.

smooth contacting F
surface

(6)
ﬁ % or % One unknown. The reaction is a force which acts
g F F perpendicular to the slot.

roller or pin in
confined smooth slot

™

One unknown. The reaction is a force which acts
perpendicular to the rod.

member pin connected
to collar on smooth rod

continued
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Types of Connection Reaction Number of Unknowns

®) : F F
Two unknowns. The reactions are two components of
\0 or () force, or the magnitude and direction ¢ of the resultant
force. Note that ¢ and ¢ are not necessarily equal [usually
not, unless the rod shown is a link as in (2)].

W )

smooth pin or hinge

)

( Two unknowns. The reactions are the couple moment
~ and the force which acts perpendicular to the rod.

member fixed connected
to collar on smooth rod

10

F o Three unknowns. The reactions are the couple moment
—_ ((é or Q and the two force components, or the couple moment and
M

the magnitude and direction ¢ of the resultant force.

fixed support

Typical examples of actual supports are shown in the following sequence of photos. The numbers refer to the
connection types in Table 5-1.

This concrete girder
rests on the ledge that
is assumed to act as
a smooth contacting
surface. (5)

The cable exerts a force on the bracket
in the direction of the cable. (1)

The rocker support for this
bridge girder allows horizontal
movement so the bridge is free
to expand and contract due to
a change in temperature. (4)

The floor beams of this
This utility building is building are welded
pinsupported at the top together and thus form
of the column. (8) fixed connections. (10)
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CHAPTER 5

EQuiLIBRIUM OF A RIGID BoDY

Internal Forces. As stated in Sec. 5.1, the internal forces that act
between adjacent particles in a body always occur in collinear pairs such
that they have the same magnitude and act in opposite directions (Newton’s
third law). Since these forces cancel each other, they will not create an
external effect on the body. It is for this reason that the internal forces should
not be included on the free-body diagram if the entire body is to be
considered. For example, the engine shown in Fig. 5-4a has a free-body
diagram shown in Fig. 5-4b. The internal forces between all its connected
parts, such as the screws and bolts, will cancel out because they form equal
and opposite collinear pairs. Only the external forces T| and T,, exerted by
the chains and the engine weight W, are shown on the free-body diagram.

(a) (b)
Fig. 5-4

Weight and the Center of Gravity. When a body is within a
gravitational field, then each of its particles has a specified weight. It was
shown in Sec. 4.8 that such a system of forces can be reduced to a single
resultant force acting through a specified point. We refer to this force
resultant as the weight W of the body and to the location of its point of
application as the center of gravity. The methods used for its determination
will be developed in Chapter 9.

In the examples and problems that follow, if the weight of the body is
important for the analysis, this force will be reported in the problem
statement. Also, when the body is uniform or made from the same
material, the center of gravity will be located at the body’s geometric
center or centroid; however, if the body consists of a nonuniform
distribution of material, or has an unusual shape, then the location of its
center of gravity G will be given.

Idealized Models. When an engineer performs a force analysis of
any object, he or she considers a corresponding analytical or idealized
model that gives results that approximate as closely as possible the
actual situation. To do this, careful choices have to be made so that
selection of the type of supports, the material behavior, and the object’s
dimensions can be justified. This way one can feel confident that any
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design or analysis will yield results which can be trusted. In complex
cases this process may require developing several different models of the
object that must be analyzed. In any case, this selection process requires
both skill and experience.

The following two cases illustrate what is required to develop a proper
model. In Fig. 5-5a, the steel beam is to be used to support the three roof
joists of a building. For a force analysis it is reasonable to assume the (2)
material (steel) is rigid since only very small deflections will occur when
the beam is loaded. A bolted connection at A will allow for any slight F F F
rotation that occurs here when the load is applied, and so a pin can be
considered for this support. At B a roller can be considered since this
support offers no resistance to horizontal movement. Building code is
used to specify the roof loading A so that the joist loads F can be ‘Ru j b J c#d _
calculated. These forces will be larger than any actual loading on the
beam since they account for extreme loading cases and for dynamic or (b)
vibrational effects. Finally, the weight of the beam is generally neglected
when it is small compared to the load the beam supports. The idealized
model of the beam is therefore shown with average dimensions q, b, c,
and d in Fig. 5-5b.

As a second case, consider the lift boom in Fig. 5-6a. By inspection, it is
supported by a pin at A and by the hydraulic cylinder BC, which can be
approximated as a weightless link. The material can be assumed rigid,
and with its density known, the weight of the boom and the location of its
center of gravity G are determined. When a design loading P is specified,
the idealized model shown in Fig. 5-6b can be used for a force analysis.
Average dimensions (not shown) are used to specify the location of the
loads and the supports.

Idealized models of specific objects will be given in some of the
examples throughout the text. It should be realized, however, that each
case represents the reduction of a practical situation using simplifying
assumptions like the ones illustrated here.

(a) (b)
Fig. 5-6
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Procedure for Analysis

To construct a free-body diagram for a rigid body or any group of
bodies considered as a single system, the following steps should be
performed:

Draw Outlined Shape.

Imagine the body to be isolated or cut “free” from its constraints
and connections and draw (sketch) its outlined shape.

Show All Forces and Couple Moments.

Identify all the known and unknown external forces and couple
moments that act on the body. Those generally encountered are due to
(1) applied loadings, (2) reactions occurring at the supports or at points
of contact with other bodies (see Table 5-1), and (3) the weight of the
body. To account for all these effects, it may help to trace over the
boundary, carefully noting each force or couple moment acting on it.

Identify Each Loading and Give Dimensions.

The forces and couple moments that are known should be labeled
with their proper magnitudes and directions. Letters are used to
represent the magnitudes and direction angles of forces and couple
moments that are unknown. Establish an x, y coordinate system so that
these unknowns, A,, A,, etc., can be identified. Finally, indicate the
dimensions of the body necessary for calculating the moments of forces.

Important Points

¢ No equilibrium problem should be solved without first drawing
the free-body diagram, so as to account for all the forces and
couple moments that act on the body.

¢ Ifasupport prevents translation of a body in a particular direction,
then the support exerts a force on the body in that direction.

¢ If rotation is prevented, then the support exerts a couple moment
on the body.

¢ Study Table 5-1.

¢ Internal forces are never shown on the free-body diagram since they
occur in equal but opposite collinear pairs and therefore cancel out.

¢ The weight of a body is an external force, and its effect is
represented by a single resultant force acting through the body’s
center of gravity G.

¢ Couple moments can be placed anywhere on the free-body
diagram since they are free vectors. Forces can act at any point
along their lines of action since they are sliding vectors.
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EXAMPLE | 5.1

Draw the free-body diagram of the uniform beam shown in Fig. 5-7a.
The beam has a mass of 100 kg.

}';ng' 1200 N

\ /

(@)

SOLUTION

The free-body diagram of the beam is shown in Fig. 5-7b. Since the
support at A is fixed, the wall exerts three reactions on the beam,
denoted as A,, A,, and M,. The magnitudes of these reactions are
unknown, and their sense has been assumed. The weight of the beam,
W = 100(9.81) N = 981 N, acts through the beam’s center of gravity G,
which is 3 m from A since the beam is uniform.

y 1200 N

NP il
x Ay Effect of applied

v force acting on beam

— G |

' A,
Effect of fixed A

support acting
on beam My 3m ‘w
981 N

Effect of gravity (weight)
acting on beam

(b)
Fig. 5-7
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EXAMPLE|S.2

Fig. 5-8

Draw the free-body diagram of the foot lever shown in Fig. 5-8a.
The operator applies a vertical force to the pedal so that the spring is
stretched 1.5 in. and the force on the link at B is 20 1b.

F
— T
B 1.51in.
—
\ 4 1*in.
I_| & )7/ k =201b/in.
Y
5in.
(b)
F 201b
(€ = r
B 1.5 in.
> 301b
\ 4 R . 1vin.
'—| AR A,
5in.
AY
(©)
SOLUTION

By inspection of the photo the lever is loosely bolted to the frame at A
and so this bolt acts as a pin. (See (8) in Table 5-1.) Although not
shown here the link at B is pinned at both ends and so it is like (2) in
Table 5-1. After making the proper measurements, the idealized
model of the lever is shown in Fig. 5-8b. From this, the free-body
diagram is shown in Fig. 5-8c. The pin at A exerts force components
A, and A, on the lever. The link exerts a force of 20 Ib, acting in the
direction of the link. In addition the spring also exerts a horizontal
force on the lever. If the stiffness is measured and found to be
k = 201b/in., then since the stretch s = 1.5in., using Eq. 3-2,
F, = ks = 201b/in. (1.5 in.) = 301b. Finally, the operator’s shoe
applies a vertical force of F on the pedal. The dimensions of the lever
are also shown on the free-body diagram, since this information will
be useful when calculating the moments of the forces. As usual, the
senses of the unknown forces at A have been assumed. The correct
senses will become apparent after solving the equilibrium equations.
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EXAMPLE|S.3

Two smooth pipes, each having a mass of 300 kg, are supported by the
forked tines of the tractor in Fig. 5-9a. Draw the free-body diagrams
for each pipe and both pipes together.

Effect of B acting on A

B Effect of sloped 30°
blade acting on A
A
l =5
/ . Effect of sloped
V 30° Effect of gravity F fork acting on A

(weight) acting on A

(b) (©)

SOLUTION

The idealized model from which we must draw the free-body
diagrams is shown in Fig. 5-9b. Here the pipes are identified, the
dimensions have been added, and the physical situation reduced to its
simplest form.

The free-body diagram for pipe A is shown in Fig. 5-9c. Its weight is
W = 300(9.81) N = 2943 N. Assuming all contacting surfaces are
smooth, the reactive forces T, F, R act in a direction normal to the
tangent at their surfaces of contact.

The free-body diagram of pipe B is shown in Fig. 5-9d. Can you
identify each of the three forces acting on this pipe? In particular, note
that R, representing the force of A on B, Fig. 5-9d, is equal and
opposite to R representing the force of B on A, Fig. 5-9c. This is a
consequence of Newton’s third law of motion.

The free-body diagram of both pipes combined (“system”) is
shown in Fig. 5-9e. Here the contact force R, which acts between A
and B, is considered as an internal force and hence is not shown on
the free-body diagram. That is, it represents a pair of equal but
opposite collinear forces which cancel each other.
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EXAMPLE 5.4

Draw the free-body diagram of the unloaded platform that is
suspended off the edge of the oil rig shown in Fig. 5-10a. The
platform has a mass of 200 kg.

T SOLUTION

The idealized model of the platform will be considered in two
707 dimensions because by observation the loading and the dimensions
! are all symmetrical about a vertical plane passing through its center,
L Fig. 5-10b. The connection at A is considered to be a pin, and the cable
supports the platform at B. The direction of the cable and average
T*1-40 m 08 dimensions of the platform are listed, and the center of gravity G has
m been determined. It is from this model that we have drawn the
1962 N free-body diagram shown in Fig. 5-10c. The platform’s weight is
(c) 200(9.81) = 1962 N. The force components A, and A, along with the
cable force T represent the reactions that both pins and both cables
exert on the platform, Fig. 5-10a. As a result, half their magnitudes are

developed on each side of the platform.
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Slrropiews

5-1. Draw the free-body diagram of the dumpster D of the
truck, which has a mass of 2.5 Mg and a center of gravity at G.
It is supported by a pin at A and a pin-connected hydraulic
cylinder BC (short link). Explain the significance of each
force on the diagram. (See Fig. 5-7b.)

Prob. 5-1

5-2. Draw the free-body diagram of member ABC which
is supported by a smooth collar at A, rocker at B, and short
link CD. Explain the significance of each force acting on the
diagram. (See Fig. 5-7b.)

Vs
6m \

Prob. 5-2

5-3. Draw the free-body diagram of the beam which
supports the 80-kg load and is supported by the pin at A and
a cable which wraps around the pulley at D. Explain the
significance of each force on the diagram. (See Fig. 5-7b.)

Prob. 5-3

*5-4. Draw the free-body diagram of the hand punch,
which is pinned at A and bears down on the smooth surface
at B.
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5-5. Draw the free-body diagram of the uniform bar, *5-8. Draw the free-body diagram of the bar, which has a
which has a mass of 100 kg and a center of mass at G. The negligible thickness and smooth points of contact at A, B,
supports A, B,and C are smooth. and C. Explain the significance of each force on the diagram.

(See Fig.5-7b.)

)<0-5 HA /E/O.Z m

1.25m
3in.

30°
Sin
A

8 in.>
Prob. 5-5 1016
30°.)

l 5-6. Draw the free-body diagram of the beam, which is Prob. 5-8

pin-supported at A and rests on the smooth incline at B.

8001b 800 Ib

600 Ib

5-9. Draw the free-body diagram of the jib crane AB,

) - which is pin connected at A and supported by member
/3 f (link) BC.
0.6 ft
Prob. 5-6
C
5-7. Draw the free-body diagram of the beam, which is
pin connected at A and rocker-supported at B.
500N N
' 7
0.4m B
©
i [ e o
" o

~—3m * 4m

Prob. 5-7 Prob. 5-9
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. CONCEPTUAL PROBLEMS

P5-1. Draw the free-body diagram of the uniform trash P5-3. Draw the free-body diagram of the wing on the
bucket which has a significant weight. It is pinned at A and passenger plane. The weights of the engine and wing are
rests against the smooth horizontal member at B. Show significant. The tires at B are smooth.

your result in side view. Label any necessary dimensions.

P5-3
P5-2. Draw the free-body diagram of the outrigger ABC
used to support a backhoe. The pin B is connected to the P5-4. Draw the free-body diagrams of the wheel and
hydraulic cylinder, which can be considered a short link member ABC used as part of the landing gear on a jet
(two-force member), the bearing shoe at A is smooth, and plane. The hydraulic cylinder AD acts as a two-force
the outrigger is pinned to the frame at C. member, and there is a pin connection at B.

P54
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(b)

(c)
Fig. 5-11

5.3 Equations of Equilibrium

In Sec. 5.1 we developed the two equations which are both necessary and
sufficient for the equilibrium of a rigid body, namely, 2F = 0 and
3M, = 0. When the body is subjected to a system of forces, which all lie
in the x—y plane, then the forces can be resolved into their x and y
components. Consequently, the conditions for equilibrium in two
dimensions are

3F, =0
SF, = 0 (5-2)
EMO =0

Here XF, and XF, represent, respectively, the algebraic sums of the x
and y components of all the forces acting on the body, and 2M,
represents the algebraic sum of the couple moments and the moments
of all the force components about the z axis, which is perpendicular to
the x—y plane and passes through the arbitrary point O.

Alternative Sets of Equilibrium Equations.  Although
Eqgs. 5-2 are most often used for solving coplanar equilibrium problems,
two alternative sets of three independent equilibrium equations may also
be used. One such set is

SF, =0
EMA =0 (5—3)
EMB =0

When using these equations it is required that a line passing through
points A and B is not parallel to the y axis. To prove that Egs. 5-3 provide
the conditions for equilibrium, consider the free-body diagram of the
plate shown in Fig. 5-11a. Using the methods of Sec. 4.7, all the forces
on the free-body diagram may be replaced by an equivalent resultant
force Fz = XF, acting at point A, and a resultant couple moment
(MR)A = XM,, Fig. 5-11b. If 3M, = 0 is satisfied, it is necessary that
(MR) 4 = 0. Furthermore, in order that Fy satisfy 3F, = 0, it must have
no component along the x axis, and therefore Fz must be parallel to the
y axis, Fig. 5-11c. Finally, if it is required that Mz = 0, where B does
not lie on the line of action of Fg, then F; = 0. Since Egs. 5-3 show that
both of these resultants are zero, indeed the body in Fig. 5-11a must be
in equilibrium.



A second alternative set of equilibrium equations is

5.3 EQUATIONS OF EQUILIBRIUM

EMA =0
EMB =0 (5—4)
EMC =0

Here it is necessary that points A, B, and C do not lie on the same line. To
prove that these equations, when satisfied, ensure equilibrium, consider
again the free-body diagram in Fig. 5-11b.1f XM, = 01is to be satisfied, then
(MR) 4 = 0. XM = 0is satisfied if the line of action of Fy passes through
point C as shown in Fig. 5-11c. Finally, if we require XMy = 0, it is necessary
that F = 0, and so the plate in Fig. 5-11a must then be in equilibrium.

Procedure for Analysis

Coplanar force equilibrium problems for a rigid body can be solved
using the following procedure.

Free-Body Diagram.

Establish the x, y coordinate axes in any suitable orientation.
Draw an outlined shape of the body.
Show all the forces and couple moments acting on the body.

Label all the loadings and specify their directions relative to the x
or y axis. The sense of a force or couple moment having an
unknown magnitude but known line of action can be assumed.

Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

Apply the moment equation of equilibrium, %M, = 0, about a
point (O) that lies at the intersection of the lines of action of two
unknown forces. In this way, the moments of these unknowns are
zero about O, and a direct solution for the third unknown can be
determined.

When applying the force equilibrium equations, XF, = 0 and
2F, = 0, orient the x and y axes along lines that will provide the
simplest resolution of the forces into their x and y components.

If the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, this indicates that
the sense is opposite to that which was assumed on the free-body
diagram.

215
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EXAMPLE | 5.5

Determine the horizontal and vertical components of reaction on the
beam caused by the pin at B and the rocker at A as shown in Fig. 5-12a.
Neglect the weight of the beam.

y
600 N 200N 600 sin 45° N

200 N

45° 0.2 m 600 cos 45° N y 03 s
P PR = —

= D AFS s DI/ B
~—2m ‘ 3m 2m—
~—2m i 3m 2m
 / A, B,
100N 100N
() (b)
Fig. 5-12

319N 319N SOLUTION

Free-Body Diagram. Identify each of the forces shown on the
A free-body diagram of the beam, Fig. 5-12b. (See Example 5.1.) For
simplicity, the 600-N force is represented by its x and y components as

319N shown in Fig. 5-12b.
319N
Equations of Equilibrium. Summing forces in the x direction yields

(c)
L5 3F, =0; 600 cos 45°N — B, = 0
B, = 424 N Ans.

A direct solution for A, can be obtained by applying the moment
equation My = 0 about point B.
C+3IMp = 0; 100 N(2 m) + (600 sin 45° N)(5 m)

— (600 cos 45°N)(0.2m) — A(7m) = 0

A, =319N Ans.
Summing forces in the y direction, using this result, gives

+T2Fy=O; 319 N — 600 sin 45° N — 100N — 200N + B, =0
B, = 405N Ans.

NOTE: Remember, the support forces in Fig. 5-12b are the result of
pins that act on the beam. The opposite forces act on the pins. For
example, Fig. 5-12¢ shows the equilibrium of the pin at A and the
rocker.
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EXAMPLE | 5.6

The cord shown in Fig. 5-13a supports a force of 100 1b and wraps
over the frictionless pulley. Determine the tension in the cord at C and
the horizontal and vertical components of reaction at pin A.

100 1b

(a)
Fig. 5-13
SOLUTION

Free-Body Diagrams. The free-body diagrams of the cord and
pulley are shown in Fig. 5-13b. Note that the principle of action, equal
but opposite reaction must be carefully observed when drawing each
of these diagrams: the cord exerts an unknown load distribution p on
the pulley at the contact surface, whereas the pulley exerts an equal but
opposite effect on the cord. For the solution, however, it is simpler to
combine the free-body diagrams of the pulley and this portion of the
cord, so that the distributed load becomes internal to this “system” and
is therefore eliminated from the analysis, Fig. 5-13c.

Equations of Equilibrium. Summing moments about point A to
eliminate A, and A, Fig. 5-13c, we have

C+3IM, = 0; 1001b (0.5ft) — T(0.5ft) = 0

T =1001b Ans.

Using this result,

HIF, =0, —A, + 100sin30°1b =0
A, = 50.01b Ans.

+13F,=0; A, — 1001b — 100 cos 30°1b = 0 (TS T
A, = 1871b Ans. (c)

NOTE: From the moment equation, it is seen that the tension remains
constant as the cord passes over the pulley. (This of course is true for any
angle 6 at which the cord is directed and for any radius r of the pulley.)
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EXAMPLE | 5.7

The member shown in Fig. 5-14a is pin connected at A and rests
against a smooth support at B. Determine the horizontal and vertical
components of reaction at the pin A.

SOLUTION

Free-Body Diagram. As shown in Fig. 5-14b, the reaction Ny is
perpendicular to the member at B. Also, horizontal and vertical
components of reaction are represented at A.

Equations of Equilibrium. Summing moments about A, we obtain
a direct solution for Ng,

C+3M, =0; —90N-m — 60N(1m) + Ny©0.75m) = 0

Nz = 200N
Using this result,
L 3F, =0 A, — 2005sin30°N = 0

A, = 100N Ans.
+13F, = 0; A, — 200 cos 30°N — 60N = 0

Ay = 233N Ans.
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EXAMPLE | 5.8

The box wrench in Fig. 5-15a is used to tighten the bolt at A. If the
wrench does not turn when the load is applied to the handle, determine ;}_JJ

the torque or moment applied to the bolt and the force of the wrench jeo0mm ot 00 mme
on the bolt. '

SOLUTION Ny 0N

Free-Body Diagram. The free-body diagram for the wrench is shown
in Fig. 5-15b. Since the bolt acts as a “fixed support,” it exerts force
components A, and A, and a moment M, on the wrench at A.

Equations of Equilibrium.

B3F, =0 A, — 52(3) N + 30 cos 60°N = 0

A, = 500N Ans.
+13F, = 0; A, — 52(55) N — 30sin 60°N = 0

A, = 740N Ans.

C+3M, =0; M, — [52(53)N] (0.3 m) — (30 sin 60° N)(0.7 m) = 0

M, =326N-'m Ans.

Note that M, must be included in this moment summation. This couple
moment is a free vector and represents the twisting resistance of the
bolt on the wrench. By Newton’s third law, the wrench exerts an equal
but opposite moment or torque on the bolt. Furthermore, the resultant
force on the wrench is

Fy, = V(5.00) + (74.0> = 74.1N Ans.

NOTE: Although only three independent equilibrium equations can be
written for a rigid body, it is a good practice to check the calculations
using a fourth equilibrium equation. For example, the above
computations may be verified in part by summing moments about
point C:

C+3Mc=0; [52(13)N] (0.4m) + 326 N-m — 74.0N(0.7m) = 0

192N'm + 326 N*m — 51.8N-m = 0
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EXAMPLE | 5.9

Determine the horizontal and vertical components of reaction on the
member at the pin A, and the normal reaction at the roller B in Fig. 5-16a.

SOLUTION

Free-Body Diagram. The free-body diagram is shown in Fig. 5-16b.
The pin at A exerts two components of reaction on the member,
A, and A,.

Fig. 5-16
Slipport 286 1b Equations of Equilibrium. The reaction Ny can be obtained directly
on pin — by summing moments about point A, since A, and A, produce no
— moment about A.
268 1b
\>member
l on pin Q‘I'EMA = 0;
286 1b
o [Np cos 30°](6 ft) — [Np sin 30°](2 ft) — 750 Ib(3 ft) = 0
C
Np = 53621b = 5361b Ans.

Using this result,
BH3F =0, A, — (53621b)sin 30° =

A, = 268 1b Ans.

+13F, =0; A, +(536.21b)cos 30° — 7501b = 0

A, = 286 Ib Ans.

Details of the equilibrium of the pin at A are shown in Fig. 5-16¢.
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EXAMPLE |5.10

The uniform smooth rod shown in Fig. 5-17a is subjected to a force
and couple moment. If the rod is supported at A by a smooth wall and
at B and C either at the top or bottom by rollers, determine the
reactions at these supports. Neglect the weight of the rod.

SOLUTION

Free-Body Diagram. As shown in Fig. 5-17b, all the support
reactions act normal to the surfaces of contact since these surfaces are
smooth. The reactions at B and C are shown acting in the positive y’
direction. This assumes that only the rollers located on the bottom of
the rod are used for support.

Equations of Equilibrium. Using the x, y coordinate system in
Fig. 5-17b, we have

HSF,=0;  Cpsin30° + Bysin30° — A, = 0 1)
+13F, = 0; =300 N + C, cos 30° + By cos 30° = 0 ()
C+3My =0;  —By(2m) + 4000N-m — C,(6m)

+ (300 cos 30°N)(8m) = 0 (3)

When writing the moment equation, it should be noted that the line of

action of the force component 300 sin 30° N passes through point A,

and therefore this force is not included in the moment equation.
Solving Egs. 2 and 3 simultaneously, we obtain

By = —1000.0N = —1kN Ans.
Cy = 13464 N = 1.35kN Ans.
Since By is a negative scalar, the sense of B, is opposite to that shown on
the free-body diagram in Fig. 5-17b. Therefore, the top roller at B serves

as the support rather than the bottom one. Retaining the negative sign
for B, (Why?) and substituting the results into Eq. 1, we obtain

1346.4 sin 30° N + (—1000.0 sin 30° N) — A, = 0
A, = 173N Ans.
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EXAMPLE |5.11

The uniform truck ramp shown in Fig. 5-18a has a weight of 400 1b
and is pinned to the body of the truck at each side and held in the
position shown by the two side cables. Determine the tension in the
cables.

SOLUTION

The idealized model of the ramp, which indicates all necessary
dimensions and supports, is shown in Fig. 5-18b. Here the center of
gravity is located at the midpoint since the ramp is considered to be
uniform.

Free-Body Diagram. Working from the idealized model, the ramp’s
free-body diagram is shown in Fig. 5-18c.

Equations of Equilibrium. Summing moments about point A will
yield a direct solution for the cable tension. Using the principle of
moments, there are several ways of determining the moment of T
about A. If we use x and y components, with T applied at B, we have

© C+3IM, = 0; —T cos 20°(7 sin 30° ft) + T sin 20°(7 cos 30° ft)
b
+ 400 1b (5 cos 30°ft) = 0

T = 14251b

We can also determine the moment of T about A by resolving it into
components along and perpendicular to the ramp at B. Then the
moment of the component along the ramp will be zero about A, so that

C+3IM, = 0; —T'sin 10°(7 ft) + 400 1b (5 cos 30° ft) = 0

T =14251b

Since there are two cables supporting the ramp,

T
T = 5 = 7121b Ans.

Fig. 5-18 NOTE: As an exercise, show that A, = 13391b and A, = 887.4 Ib.




5.3

Determine the support reactions on the member in Fig. 5-19a. The
collar at A is fixed to the member and can slide vertically along the
vertical shaft.

e 45° My
| | S00N - m /
B L e
X

Fig. 5-19

SOLUTION

Free-Body Diagram. The free-body diagram of the member is
shown in Fig. 5-19b. The collar exerts a horizontal force A, and
moment M, on the member. The reaction Nj of the roller on the member
is vertical.

Equations of Equilibrium. The forces A, and N can be determined
directly from the force equations of equilibrium.

L3F =0 =10 e
+13F, = 0; Nz — 900N = 0
Ny = 900 N Ans,

The moment M, can be determined by summing moments either
about point A or point B.

Q“‘EMA =N0:

M, — 900 N(1.5m) — 500 N-m + 900 N [3m + (I m) cos 45°] = 0
M, = —1486N'm = 1.49kN-m) Ans.

or

C+3ZMz=0; My +900N[1.5m + (1 m)cos45°] — 500N-m = 0
M, = —1486N'm = 1.49kN-m) Ans.

The negative sign indicates that M, has the opposite sense of rotation
to that shown on the free-body diagram.

EQUATIONS OF EQUILIBRIUM

o

500N - m &

Npg
(b)
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The hydraulic cylinder AB is a typical
example of a two-force member since
it is pin connected at its ends and,
provided its weight is neglected, only
the pin forces act on this member.

The link used for this railroad car brake
is a three-force member. Since the force
Fp in the tie rod at B and F. from the
link at C are parallel, then for equilibrium
the resultant force F, at the pin A must
also be parallel with these two forces.

The boom and bucket on this lift is a
three-force member, provided its weight
is neglected. Here the lines of action of
the weight of the worker, W, and the force
of the two-force member (hydraulic
cylinder) at B, Fp, intersect at O. For
moment equilibrium, the resultant force
at the pin A, F,, must also be directed
towards O.

EQuiLIBRIUM OF A RIGID BoDY

5.4 Two- and Three-Force Members

The solutions to some equilibrium problems can be simplified by
recognizing members that are subjected to only two or three forces.

Two-Force Members. As the name implies, a two-force member
has forces applied at only two points on the member. An example of a
two-force member is shown in Fig. 5-20a. To satisfy force equilibrium,
F, and Fz must be equal in magnitude, F, = Fz = F, but opposite in
direction (XF = 0), Fig. 5-20b. Furthermore, moment equilibrium requires
that F, and Fp share the same line of action, which can only happen if they
are directed along the line joining points A and B (M, = 0 or XM = 0),
Fig. 5-20c. Therefore, for any two-force member to be in equilibrium, the
two forces acting on the member must have the same magnitude, act in
opposite directions, and have the same line of action, directed along the line
joining the two points where these forces act.

Il
~

% Fy A/ Fa

FB:F

(a) (b) ©

Two-force member
Fig. 520
Three-Force Members. If a member is subjected to only three
forces, it is called a three-force member. Moment equilibrium can be
satisfied only if the three forces form a concurrent or parallel force
system. To illustrate, consider the member subjected to the three forces
F,, F,, and F;, shown in Fig. 5-21a. If the lines of action of F; and F,
intersect at point O, then the line of action of F; must also pass through
point O so that the forces satisfy M, = 0.As a special case, if the three
forces are all parallel, Fig. 5-21b, the location of the point of intersection,
O, will approach infinity.
o

/ ~ &

! (a) (b)

Three-force member

Fig. 5-21
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EXAMPLE |5.13

The lever ABC is pin supported at A and connected to a short link BD
as shown in Fig. 5-22a. If the weight of the members is negligible,
determine the force of the pin on the lever at A.

SOLUTION

Free-Body Diagrams. As shown in Fig. 5-22b, the short link BD is
a two-force member, so the resultant forces at pins D and B must be
equal, opposite, and collinear. Although the magnitude of the force is
unknown, the line of action is known since it passes through B and D.

Lever ABC is a three-force member, and therefore, in order to
satisfy moment equilibrium, the three nonparallel forces acting on it
must be concurrent at O, Fig. 5-22c¢. In particular, note that the force F
on the lever at B is equal but opposite to the force F acting at B on the
link. Why? The distance CO must be 0.5 m since the lines of action of
F and the 400-N force are known.

Equations of Equilibrium. By requiring the force system to be
concurrent at O, since XM, = 0, the angle 6 which defines the line of
action of F, can be determined from trigonometry,

0.7
0= tan_1<04) = 60.3°

Using the x, y axes and applying the force equilibrium equations,

LSF, =0, F,cos603° — Fcos45° + 400N = 0

+13F, = 0;  F,sin60.3° — Fsin45° =

Solving, we get

F, = 1.07kN Ans.
F = 132kN

NOTE: We can also solve this problem by representing the force at A
by its two components A, and A, and applying XM, = 0, XF, = 0,
2F, = 0 to the lever. Once A, and A, are determined, we can get F,
and 6.
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD.

F5-1. Determine the horizontal and vertical components
of reaction at the supports. Neglect the thickness of the
beam.

600 1b - ft

/°\ %L .
L—S ft 4—5 ft 5 ft J
F5-1

F5-2. Determine the horizontal and vertical components
' of reaction at the pin A and the reaction on the beam at C.

4 kN
|

i— 1.5m i— 1.5m +

F5-2

F5-3. The truss is supported by a pin at A and a roller at B.
Determine the support reactions.

F5-3

F5-4. Determine the components of reaction at the fixed
support A. Neglect the thickness of the beam.

200N 200N 200N

30°

Fl m#l m#l m4 400 N

F5-4

F5-5. The 25-kg bar has a center of mass at G. If it is
supported by a smooth peg at C, a roller at A, and cord AB,
determine the reactions at these supports.

F5-5

F5-6. Determine the reactions at the smooth contact
points A, B, and C on the bar.
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“propiems

All problem solutions must include an FBD.

5-10. Determine the horizontal and vertical components
of reaction at the pin A and the reaction of the rocker B on
the beam.

4 kN

Prob. 5-10

5-11. Determine the magnitude of the reactions on the
beam at A and B. Neglect the thickness of the beam.

600 N 15°

Prob. 5-11

*5-12. Determine the components of the support
reactions at the fixed support A on the cantilevered beam.

6 kN

30°

30

A J\/l Mmoo 4N
Lfl.S m 1.5m

Prob. 5-12

5-13. The 75-kg gate has a center of mass located at G.If A
supports only a horizontal force and B can be assumed as a
pin, determine the components of reaction at these supports.

Prob. 5-13

5-14. The overhanging beam is supported by a pin at A
and the two-force strut BC. Determine the horizontal and
vertical components of reaction at A and the reaction at B
on the beam.

Prob. 5-14

5-15. Determine the horizontal and vertical components
of reaction at the pin at A and the reaction of the roller at B
on the lever.

20 in. ——18 in: |

Prob. 5-15
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*5-16. Determine the components of reaction at the
supports A and B on the rod.

P
\ L L \
‘ 2 2
1 }
EA =
Prob. 5-16

5-17. If the wheelbarrow and its contents have a mass of
60 kg and center of mass at G, determine the magnitude of
the resultant force which the man must exert on each of the
two handles in order to hold the wheelbarrow in equilibrium.

Prob. 5-17

5-18. Determine the tension in the cable and the
horizontal and vertical components of reaction of the pin A.
The pulley at D is frictionless and the cylinder weighs 80 Ib.

Prob. 5-18

EQuiLIBRIUM OF A RIGID BoDY

5-19. The shelf supports the electric motor which has a
mass of 15 kg and mass center at G,,. The platform upon
which it rests has a mass of 4 kg and mass center at G,.
Assuming that a single bolt B holds the shelf up and the
bracket bears against the smooth wall at A, determine this
normal force at A and the horizontal and vertical
components of reaction of the bolt on the bracket.

Prob. 5-19

*5-20. The pad footing is used to support the load of 12 000 1b.
Determine the intensities w; and w, of the distributed loading
acting on the base of the footing for the equilibrium.

12 000 1b

| 35in. |

Prob. 5-20



5-21. When holding the 5-lb stone in equilibrium, the
humerus H, assumed to be smooth, exerts normal forces F.
and F, on the radius C and ulna A as shown. Determine
these forces and the force Fj that the biceps B exerts on the
radius for equilibrium. The stone has a center of mass at G.
Neglect the weight of the arm.

\ 14 in.

Prob. 5-21

5-22. The smooth disks D and E have a weight of 200 1b
and 100 1b, respectively. If a horizontal force of P = 200 1b
is applied to the center of disk E, determine the normal
reactions at the points of contact with the ground at A, B,
and C.

5-23. The smooth disks D and E have a weight of 200 1b
and 100 Ib, respectively. Determine the largest horizontal
force P that can be applied to the center of disk £ without
causing the disk D to move up the incline.

Probs. 5-22/23
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*5-24. The man is pulling a load of 8 Ib with one arm held
as shown. Determine the force Fy this exerts on the humerus
bone H, and the tension developed in the biceps muscle B.
Neglect the weight of the man’s arm.

81b

Prob. 5-24

5-25. Determine the magnitude of force at the pin A and in
the cable BC needed to support the 500-1b load. Neglect the
weight of the boom AB.

Prob. 5-25
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5-26. The winch consists of a drum of radius 4 in., which is
pin connected at its center C. At its outer rim is a ratchet
gear having a mean radius of 6 in. The pawl AB serves as a
two-force member (short link) and keeps the drum from
rotating. If the suspended load is 500 Ib, determine the
horizontal and vertical components of reaction at the pin C.

Prob. 5-26

5-27. The sports car has a mass of 1.5 Mg and mass center
at G. If the front two springs each have a stiffness of
ks = 58kN/m and the rear two springs each have a
stiffness of kg3 = 65 kN/m, determine their compression
when the car is parked on the 30° incline. Also, what friction
force Fp must be applied to each of the rear wheels to hold
the car in equilibrium? Hint: First determine the normal
force at A and B, then determine the compression in
the springs.

Prob. 5-27

EQuiLIBRIUM OF A RIGID BoDY

*5-28. The telephone pole of negligible thickness is
subjected to the force of 80 Ib directed as shown. It is
supported by the cable BCD and can be assumed pinned at
its base A. In order to provide clearance for a sidewalk right
of way, where D is located, the strut CE is attached at C, as
shown by the dashed lines (cable segment CD is removed).
If the tension in CD’ is to be twice the tension in BCD,
determine the height 4 for placement of the strut CE.

Prob. 5-28

5-29. The floor crane and the driver have a total weight of
2500 1b with a center of gravity at G. If the crane is required
to lift the 500-1b drum, determine the normal reaction on
both the wheels at A and both the wheels at B when the
boom is in the position shown.

5-30. The floor crane and the driver have a total weight of
2500 Ib with a center of gravity at G. Determine the largest
weight of the drum that can be lifted without causing the
crane to overturn when its boom is in the position shown.

6 ft

8.4 ft ‘

2.2 ft
1.4 1t

Probs. 5-29/30



5-31. The mobile crane has a weight of 120000 1b and
center of gravity at G; the boom has a weight of 30000 1b
and center of gravity at G,. Determine the smallest angle of
tilt # of the boom, without causing the crane to overturn if
the suspended load is W = 40 000 1b. Neglect the thickness
of the tracks at A and B.

*5-32. The mobile crane has a weight of 120000 Ib and
center of gravity at G;; the boom has a weight of 30000 1b
and center of gravity at G,. If the suspended load has a
weight of W = 16 000 b, determine the normal reactions at
the tracks A and B. For the calculation, neglect the thickness
of the tracks and take 6 = 30°.

Probs. 5-31/32

5-33. The woman exercises on the rowing machine. If she
exerts a holding force of F = 200 N on handle ABC,
determine the horizontal and vertical components of
reaction at pin C and the force developed along the
hydraulic cylinder BD on the handle.

0.15m 0.15m

Prob. 5-33
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5-34. The ramp of a ship has a weight of 200 Ib and a
center of gravity at G. Determine the cable force in CD
needed to just start lifting the ramp, (i.e., so the reaction at
B becomes zero). Also, determine the horizontal and
vertical components of force at the hinge (pin) at A.

Prob. 5-34

5-35. The toggle switch consists of a cocking lever that is
pinned to a fixed frame at A and held in place by the spring
which has an unstretched length of 200 mm. Determine the
magnitude of the resultant force at A and the normal force
on the peg at B when the lever is in the position shown.

Prob. 5-35




232 CHAPTER 5

*5-36. The worker uses the hand truck to move material
down the ramp. If the truck and its contents are held in the
position shown and have a weight of 100 Ib with center of
gravity at G, determine the resultant normal force of both
wheels on the ground A and the magnitude of the force
required at the grip B.

Prob. 5-36

5-37. The boom supports the two vertical loads. Neglect
the size of the collars at D and B and the thickness of the
boom, and compute the horizontal and vertical components
of force at the pin A and the force in cable CB. Set
F, =800NandF, = 350N.

5-38. The boom is intended to support two vertical loads, F
and F,. If the cable CB can sustain a maximum load of 1500 N
before it fails, determine the critical loads if F; = 2F,. Also,
what is the magnitude of the maximum reaction at pin A?

b

Probs. 5-37/38
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5-39. The jib crane is pin connected at A and supported
by a smooth collar at B. If x = 8 ft, determine the reactions
on the jib crane at the pin A and smooth collar B. The load
has a weight of 5000 1b.

*5-40. The jib crane is pin connected at A and supported
by a smooth collar at B. Determine the roller placement x
of the 5000-1b load so that it gives the maximum and
minimum reactions at the supports. Calculate these
reactions in each case. Neglect the weight of the crane.
Require 4 ft = x = 10 ft.

i_
[

1B

12 ft S

Probs. 5-39/40

5-41. The crane consists of three parts, which have weights of
W, = 35001b, W, = 9001b, W; = 15001b and centers of
gravity at G|, G,, and G;, respectively. Neglecting the weight
of the boom, determine (a) the reactions on each of the four
tires if the load is hoisted at constant velocity and has a weight
of 800 Ib, and (b), with the boom held in the position shown,
the maximum load the crane can lift without tipping over.

—
— L

I 10 ft — 8 ft

Prob. 5-41



5-42. The cantilevered jib crane is used to support the
load of 780 Ib. If x = 5 ft, determine the reactions at
the supports. Note that the supports are collars that allow
the crane to rotate freely about the vertical axis. The collar
at B supports a force in the vertical direction, whereas the
one at A does not.

5-43. The cantilevered jib crane is used to support the
load of 780 1b. If the trolley T can be placed anywhere
between 1.5ft =x = 7.5ft, determine the maximum
magnitude of reaction at the supports A and B. Note that
the supports are collars that allow the crane to rotate freely
about the vertical axis. The collar at B supports a force in
the vertical direction, whereas the one at A does not.

8 ft J‘
D) 8|
T
780 b

Probs. 5-42/43

*5-44. The upper portion of the crane boom consists of
the jib AB, which is supported by the pin at A, the guy line
BC, and the backstay CD, each cable being separately
attached to the mast at C. If the 5-kN load is supported by
the hoist line, which passes over the pulley at B, determine
the magnitude of the resultant force the pin exerts on the
jib at A for equilibrium, the tension in the guy line BC, and
the tension 7 in the hoist line. Neglect the weight of the jib.
The pulley at B has a radius of 0.1 m.

Prob. 5-44
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5-45. The device is used to hold an elevator door open. If
the spring has a stiffness of k = 40 N/m and it is compressed
0.2 m, determine the horizontal and vertical components of
reaction at the pin A and the resultant force at the wheel
bearing B.

150 mm—~+125 mm-|

—
Oi=p
E 1
100 mm
B
A
Prob. 5-45

5-46. Three uniform books, each having a weight W and
length a, are stacked as shown. Determine the maximum
distance d that the top book can extend out from the bottom
one so the stack does not topple over.

Prob. 5-46
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5-47. The horizontal beam is supported by springs at its
ends. Each spring has a stiffness of k = SkN/m and is
originally unstretched when the beam is in the horizontal
position. Determine the angle of tilt of the beam if a load of
800 N is applied at point C as shown.

*5-48. The horizontal beam is supported by springs at its
ends. If the stiffness of the spring at A is k4, = 5 kN/m,
determine the required stiffness of the spring at B so that if
the beam is loaded with the 800-N force it remains in the
horizontal position. The springs are originally constructed
so that the beam is in the horizontal position when it is
unloaded.

800 N
l ) ’
A C B

I m ‘ 2m ‘

Probs. 5-47/48

5-49. The wheelbarrow and its contents have a mass of
m = 60 kg with a center of mass at G. Determine the
normal reaction on the tire and the vertical force on each
hand to hold it at § = 30°. Take a = 0.3 m, b = 0.45 m,
¢c=0.75mandd = 0.1 m.

5-50. The wheelbarrow and its contents have a mass m
and center of mass at G. Determine the greatest angle of
tilt 6 without causing the wheelbarrow to tip over.

Probs. 5-49/50
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5-51. The rigid beam of negligible weight is supported
horizontally by two springs and a pin. If the springs are
uncompressed when the load is removed, determine the force
in each spring when the load P is applied. Also, compute the
vertical deflection of end C. Assume the spring stiffness k is
large enough so that only small deflections occur. Hint: The
beam rotates about A so the deflections in the springs can be
related.

I
AR =C
| L —T L2 —]
Prob. 5-51

*5-52. A boy stands out at the end of the diving board,
which is supported by two springs A and B, each having a
stiffness of k = 15 kN/m. In the position shown the board is
horizontal. If the boy has a mass of 40 kg, determine the
angle of tilt which the board makes with the horizontal after
he jumps off. Neglect the weight of the board and assume it
is rigid.

—1m — 3m
'™

Prob. 5-52

5-53. The uniform beam has a weight W and length / and
is supported by a pin at A and a cable BC. Determine the
horizontal and vertical components of reaction at A and
the tension in the cable necessary to hold the beam in the
position shown.

Prob. 5-53



5-54. Determine the distance d for placement of the load
P for equilibrium of the smooth bar in the position 6 as
shown. Neglect the weight of the bar.

5-55. If d =1 m, and 6 = 30°, determine the normal
reaction at the smooth supports and the required distance a
for the placement of the roller if P = 600 N. Neglect the
weight of the bar.

g —

Probs. 5-54/55

*5-56. The disk B has a mass of 20 kg and is supported on the
smooth cylindrical surface by a spring having a stiffness of
k = 400 N/m and unstretched length of /, = 1 m. The spring
remains in the horizontal position since its end A is attached to
the small roller guide which has negligible weight. Determine
the angle 6 for equilibrium of the roller.

0.2 m
A k B
r=2m
0
Prob. 5-56

5-57. The beam is subjected to the two concentrated loads.
Assuming that the foundation exerts a linearly varying load
distribution on its bottom, determine the load intensities w
and w, for equilibrium if P = 500 Ib and L = 12 ft.

5-58. The beam is subjected to the two concentrated loads.
Assuming that the foundation exerts a linearly varying load
distribution on its bottom, determine the load intensities w
and w, for equilibrium in terms of the parameters shown.

P 2P

L
3

LTI

w2

L L
3 3

Probs. 5-57/58
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5-59. The thin rod of length / is supported by the smooth
tube. Determine the distance a needed for equilibrium if
the applied load is P.

A

Prob. 5-59

*5-60. The 30-N uniform rod has a length of / = 1 m.
If s = 1.5 m, determine the distance 4 of placement at the
end A along the smooth wall for equilibrium.

5-61. The uniform rod has a length / and weight W. It is
supported at one end A by a smooth wall and the other end
by a cord of length s which is attached to the wall as shown.
Determine the placement 4 for equilibrium.

Probs. 5-60/61
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. CONCEPTUAL PROBLEMS

P5-5. The tie rod is used to support this overhang at the
entrance of a building. If it is pin connected to the building
wall at A and to the center of the overhang B, determine if
the force in the rod will increase, decrease, or remain the
same if (a) the support at A is moved to a lower position D,
and (b) the support at B is moved to the outer position C.
Explain your answer with an equilibrium analysis, using
dimensions and loads. Assume the overhang is pin supported
from the building wall.

P5-5

P5-6. The man attempts to pull the four wheeler up the
incline and onto the trailer. From the position shown, is it
more effective to pull on the rope at A, or would it be better
to pull on the rope at B? Draw a free-body diagram for each
case, and do an equilibrium analysis to explain your answer.
Use appropriate numerical values to do your calculations.

P5-6

P5-7. Like all aircraft, this jet plane rests on three wheels.
Why not use an additional wheel at the tail for better
support? (Can you think of any other reason for not
including this wheel?) If there was a fourth tail wheel, draw
a free-body diagram of the plane from a side (2 D) view, and
show why one would not be able to determine all the wheel
reactions using the equations of equilibrium.

P5-7

P5-8. Where is the best place to arrange most of the logs
in the wheelbarrow so that it minimizes the amount of force
on the backbone of the person transporting the load? Do an
equilibrium analysis to explain your answer.

P5-8
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5.5 Free-Body Diagrams

The first step in solving three-dimensional equilibrium problems, as in the
case of two dimensions, is to draw a free-body diagram. Before we can do
this, however, it is first necessary to discuss the types of reactions that can
occur at the supports.

Support Reactions. The reactive forces and couple moments
acting at various types of supports and connections, when the members
are viewed in three dimensions, are listed in Table 5-2. It is important to
recognize the symbols used to represent each of these supports and to
understand clearly how the forces and couple moments are developed.
As in the two-dimensional case:

e A force is developed by a support that restricts the translation of its
attached member.

e A couple moment is developed when rotation of the attached
member is prevented.

For example, in Table 5-2, item (4), the ball-and-socket joint prevents
any translation of the connecting member; therefore, a force must act on
the member at the point of connection. This force has three components
having unknown magnitudes, F, F), F,. Provided these components are
known, one can obtain the magnitude of force, F = \VF? + Ff + Fz,
and the force’s orientation defined by its coordinate direction angles «,
B, v, Egs. 2-5.* Since the connecting member is allowed to rotate freely
about any axis, no couple moment is resisted by a ball-and-socket joint.

It should be noted that the single bearing supports in items (5) and (7),
the single pin (8), and the single hinge (9) are shown to resist both force
and couple-moment components. If, however, these supports are used in
conjunction with other bearings, pins, or hinges to hold a rigid body in
equilibrium and the supports are properly aligned when connected to the
body, then the force reactions at these supports alone are adequate for
supporting the body. In other words, the couple moments become
redundant and are not shown on the free-body diagram. The reason for
this should become clear after studying the examples which follow.

* The three unknowns may also be represented as an unknown force magnitude F and
two unknown coordinate direction angles. The third direction angle is obtained using the
identity cos? @ + cos? 8 + cos’y = 1, Eq. 2-8.

5.5 FRree-Boby DIAGRAMS
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Types of Connection Reaction Number of Unknowns

F
One unknown. The reaction is a force which acts away
from the member in the known direction of the cable.
i F

)

)

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

smooth surface support

©)

One unknown. The reaction is a force which acts
perpendicular to the surface at the point of contact.

roller

4
4) F.
Three unknowns. The reactions are three rectangular
g force components.
F/! Ey

ball and socket

©)
5. Mz/1\ Four unknowns. The reactions are two force and two
@ ~r couple-moment components which act perpendicular to

F, the shaft. Note: The couple moments are generally not
applied if the body is supported elsewhere. See the
Mx)/\’ F, examples.

single journal bearing

continued
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Types of Connection Reaction Number of Unknowns

M, f
d>
F Five unknowns. The reactions are two force and three
5 couple-moment components. Note: The couple moments
ﬂMy . :
. ' . Mx(3 = \s are generally not applied if the body is supported
single journal bearing L) E elsewhere. See the examples.
with square shaft
™) .
ch
== +
F . .
L 1F, Five unknowns. The reactions are three force and two
M couple-moment components. Note: The couple moments
% F, are generally not applied if the body is supported

) ) elsewhere. See the examples.
single thrust bearing

®

Five unknowns. The reactions are three force and two
couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.

single smooth pin

)
r F Five unknowns. The reactions are three force and two
— couple-moment components. Note: The couple moments
are generally not applied if the body is supported
elsewhere. See the examples.
single hinge
(10)

Six unknowns. The reactions are three force and three
couple-moment components.

I

fixed support
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Typical examples of actual supports that are referenced to Table 5-2 are
shown in the following sequence of photos.

The journal bearings support the ends of
the shaft. (5)

This ball-and-socket joint provides a
connection for the housing of an earth
grader to its frame. (4)

This thrust bearing is used to support the This pin is used to support the end of the
drive shaft on a machine. (7) strut used on a tractor. (8)

Free-Body Diagrams. The general procedure for establishing the
free-body diagram of a rigid body has been outlined in Sec.5.2. Essentially
it requires first “isolating” the body by drawing its outlined shape. This is
followed by a careful labeling of all the forces and couple moments with
reference to an established x, y, z coordinate system. As a general rule, it
is suggested to show the unknown components of reaction as acting on
the free-body diagram in the positive sense. In this way, if any negative
values are obtained, they will indicate that the components act in the
negative coordinate directions.
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EXAMPLE |5.14

Consider the two rods and plate, along with their associated free-body
diagrams, shown in Fig. 5-23. The x, y, z axes are established on the
diagram and the unknown reaction components are indicated in the i
positive sense. The weight is neglected.

45N - m
(

SOLUTION

500N Az 500N
Properly aligned journal The force reactions developed by
bearings at A, B, C. the bearings are sufficient for

equilibrium since they prevent the
shaft from rotating about each of the
coordinate axes. No couple moments
at each bearing are developed.

2001b - ft

S

300 Ib B

. 300 Ib B
Pin at A and cable BC.

Moment components are developed
by the pin on the rod to prevent
rotation about the x and z axes.

400 1b

B Only force reactions are developed by
the bearing and hinge on the plate to
Properly aligned journal bearing prevent rotation about each coordinate axis.
at A and hinge at C. Roller at B. No moments are developed at the hinge.

Fig. 5-23
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5.6 Equations of Equilibrium

As stated in Sec. 5.1, the conditions for equilibrium of a rigid body
subjected to a three-dimensional force system require that both the
resultant force and resultant couple moment acting on the body be equal
to zero.

Vector Equations of Equilibrium. The two conditions for
equilibrium of a rigid body may be expressed mathematically in vector
form as

SF=0

EMO =0 (5_5)

where F is the vector sum of all the external forces acting on the body
and %M, is the sum of the couple moments and the moments of all the
forces about any point O located either on or off the body.

Scalar Equations of Equilibrium. If all the external forces and
couple moments are expressed in Cartesian vector form and substituted
into Egs. 5-5, we have

3F = 3Fi+ XFj+ 3XFk=0
SMy = 3M,i + IM,j+ SMk =0

Since the i, j, and k components are independent from one another, the
above equations are satisfied provided

SF, =0
3F, =0 (5-6a)
SF, =0

and
M, =0
EMy =0 (5-6b)
M, =0

These six scalar equilibrium equations may be used to solve for at most
six unknowns shown on the free-body diagram. Equations 5-6a require
the sum of the external force components acting in the x, y, and z
directions to be zero, and Eqs. 5-6b require the sum of the moment
components about the x, y, and z axes to be zero.
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5.7 Constraints and Statical Determinacy

To ensure the equilibrium of a rigid body, it is not only necessary to satisfy
the equations of equilibrium, but the body must also be properly held or
constrained by its supports. Some bodies may have more supports than
are necessary for equilibrium, whereas others may not have enough or the
supports may be arranged in a particular manner that could cause the
body to move. Each of these cases will now be discussed.

Redundant Constraints. When a body has redundant supports,
that is, more supports than are necessary to hold it in equilibrium, it
becomes statically indeterminate. Statically indeterminate means that
there will be more unknown loadings on the body than equations of
equilibrium available for their solution. For example, the beam in Fig. 5-24a
and the pipe assembly in Fig. 5-24b, shown together with their free-body
diagrams, are both statically indeterminate because of additional
(or redundant) support reactions. For the beam there are five unknowns,
My, A, Ay, B, and Gy, for which only three equilibrium equations can be
written (2F, = 0, XF, = 0, and 2M, = 0, Eq. 5-2). The pipe assembly
has eight unknowns, for which only six equilibrium equations can be
written, Eqgs. 5-6.

The additional equations needed to solve statically indeterminate
problems of the type shown in Fig. 5-24 are generally obtained from the
deformation conditions at the points of support. These equations involve
the physical properties of the body which are studied in subjects dealing
with the mechanics of deformation, such as “mechanics of materials.”*

400 N

200N

(b)

* See R. C. Hibbeler, Mechanics of Materials, 8th edition, Pearson Education/Prentice
Hall, Inc.
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500N
\2‘ kN -m l .
) |
4 O J O
B C
y
A, . S00N
A
\‘2 kN -m ’
— |
l X
M,
TB}' Tcy
(a)
Fig. 5-24
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Improper Constraints. Having the same number of unknown
reactive forces as available equations of equilibrium does not always
guarantee that a body will be stable when subjected to a particular
loading. For example, the pin support at A and the roller support at B for
the beam in Fig. 5-25a are placed in such a way that the lines of action of
the reactive forces are concurrent at point A. Consequently, the applied
loading P will cause the beam to rotate slightly about A, and so the beam
is improperly constrained, XM, # 0.

In three dimensions, a body will be improperly constrained if the lines of
action of all the reactive forces intersect a common axis. For example, the
reactive forces at the ball-and-socket supports at A and B in Fig. 5-25b
all intersect the axis passing through A and B. Since the moments of these
forces about A and B are all zero, then the loading P will rotate the
member about the AB axis, XM, # 0.

(®)

Fig. 5-25
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TFA T— TFB

(a)

100 N /

(b)

Fig. 5-26

Another way in which improper constraining leads to instability occurs
when the reactive forces are all parallel. Two- and three-dimensional
examples of this are shown in Fig. 5-26. In both cases, the summation of
forces along the x axis will not equal zero.

In some cases, a body may have fewer reactive forces than equations of
equilibrium that must be satisfied. The body then becomes only partially
constrained. For example, consider member AB in Fig. 5-27a with its
corresponding free-body diagram in Fig. 5-27b. Here XF, = 0 will not
be satisfied for the loading conditions and therefore equilibrium will not
be maintained.

To summarize these points, a body is considered improperly constrained
if all the reactive forces intersect at a common point or pass through a
common axis, or if all the reactive forces are parallel. In engineering
practice, these situations should be avoided at all times since they will
cause an unstable condition.

245
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Important Points

¢ Always draw the free-body diagram first when solving any
equilibrium problem.

o If a support prevents translation of a body in a specific direction,
then the support exerts a force on the body in that direction.

o If a support prevents rotation about an axis, then the support
exerts a couple moment on the body about the axis.

o If a body is subjected to more unknown reactions than available
equations of equilibrium, then the problem is statically indeterminate.

© A stable body requires that the lines of action of the reactive forces
do not intersect a common axis and are not parallel to one another.

Procedure for Analysis

Three-dimensional equilibrium problems for a rigid body can be
solved using the following procedure.

Free-Body Diagram.

e Draw an outlined shape of the body.

e Show all the forces and couple moments acting on the body.

e Establish the origin of the x, y, z axes at a convenient point and
orient the axes so that they are parallel to as many of the external
forces and moments as possible.

e Label all the loadings and specify their directions. In general,
show all the unknown components having a positive sense along
the x, y, z axes.

e Indicate the dimensions of the body necessary for computing the
moments of forces.

Equations of Equilibrium.

e If the x, y, z force and moment components seem easy to
determine, then apply the six scalar equations of equilibrium;
otherwise use the vector equations.

e [tisnot necessary that the set of axes chosen for force summation
coincide with the set of axes chosen for moment summation.
Actually, an axis in any arbitrary direction may be chosen for
summing forces and moments.

e Choose the direction of an axis for moment summation such that
it intersects the lines of action of as many unknown forces as
possible. Realize that the moments of forces passing through
points on this axis and the moments of forces which are parallel
to the axis will then be zero.

e [f the solution of the equilibrium equations yields a negative
scalar for a force or couple moment magnitude, it indicates that
the sense is opposite to that assumed on the free-body diagram.
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EXAMPLE|S.15

The homogeneous plate shown in Fig. 5-28a has a mass of 100 kg and is
subjected to a force and couple moment along its edges. If it is supported
in the horizontal plane by a roller at A, a ball-and-socket joint at B, and a
cord at C, determine the components of reaction at these supports.

-

SOLUTION (SCALAR ANALYSIS)

Free-Body Diagram. There are five unknown reactions acting on
the plate, as shown in Fig. 5-28b. Each of these reactions is assumed to
act in a positive coordinate direction.

Equations of Equilibrium. Since the three-dimensional geometry

is rather simple, a scalar analysis provides a direct solution to this T

problem. A force summation along each axis yields ]

SF, = 0; B, =0 Ans.

3F, =0 B, =0 Ans. Y
SF, = 0; A, + B, +Tc— 300N —98IN =0 (1)

Recall that the moment of a force about an axis is equal to the product
of the force magnitude and the perpendicular distance (moment arm) Fig. 5-28
from the line of action of the force to the axis. Also, forces that are
parallel to an axis or pass through it create no moment about the axis.

Hence, summing moments about the positive x and y axes, we have

SM, =0, Tc(2m)—981N(Im)+ B2m)=0 ©)
SM,=0;  300N(1.5m) + 981 N(1.5m) — B,(3m) — A,(3m)
—200N+m = 0 3)

The components of the force at B can be eliminated if moments are
summed about the x’ and y’ axes. We obtain

My =0; 981N(Im)+300N2m)—A(2m) =0 (4)
XMy =0;  —300N(1.5m) — 981 N(1.5m) — 200N -m
+ Te(3m) =0 (5)

Solving Egs. 1 through 3 or the more convenient Eqs. 1, 4, and 5 yields
A, =79N B,= —217N T, =707N Ans.

The negative sign indicates that B, acts downward.

NOTE: The solution of this problem does not require a summation of
moments about the z axis. The plate is partially constrained since the
supports cannot prevent it from turning about the z axis if a force is
applied to it in the x—y plane.
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EXAMPLE [ 5.16

Determine the components of reaction that the ball-and-socket joint
at A, the smooth journal bearing at B, and the roller support at C
exert on the rod assembly in Fig. 5-29a.

Fig. 5-29

SOLUTION

Free-Body Diagram. As shown on the free-body diagram, Fig. 5-29b,
the reactive forces of the supports will prevent the assembly from
rotating about each coordinate axis, and so the journal bearing at B only
exerts reactive forces on the member. No couple moments are required.

Equations of Equilibrium. A direct solution for A, can be obtained
by summing forces along the y axis.

3F, =0 A,=0 Ans.
The force F can be determined directly by summing moments about
the y axis.
M, = 0; Fc(0.6 m) — 900 N(0.4 m) = 0

Fc = 600N Ans.
Using this result, B, can be determined by summing moments about
the x axis.
M, = 0; B.(0.8 m) + 600 N(1.2m) — 900 N(0.4 m) = 0

B, = —450N Ans.

The negative sign indicates that B, acts downward. The force B, can be
found by summing moments about the z axis.

M, = 0; -B(08m)=0 B, =0 Ans.
Thus,
3F, = 0; A, +0=0 A, =0 Ans.

Finally, using the results of B, and F.
2F, = 0; A, + (—450N) + 600N — 900N = 0
_=750N Ans.
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EXAMPLE | 5.17

249

The boom is used to support the 75-1b flowerpot in Fig. 5-30a.
Determine the tension developed in wires AB and AC.

SOLUTION
Free-Body Diagram. The free-body diagram of the boom is shown
in Fig. 5-300.

Equations of Equilibrium. We will use a vector analysis.

g {2i — 6j + 3k} ft
£ = Ful 72) = )
AR A g PAV@ 0 + (=6 102 + (3 fr)?

= 2F i — $Fupj + 3 Fupk

v —2i — 6j + 3k} ft
e FAC<AC> _ FAc< { j + 3k} )

Tac V(=21 + (=6 ft)2 + (3 fr)? Fig. 5-30
= _%FACi - %Fch + %FACk

We can eliminate the force reaction at O by writing the moment
equation of equilibrium about point O.

EMOZO, rAX(FAB+FAC+W)=0

(6) X [(% Fupl — 2 Fypj + 3FABk> + <_% Fud — 8 Fucj + 3FACk> + (—751()} =0

<178FAB + 17i8FAC - 450>i + (_172FAB + 172FAC>k = 0

SM, = 0; 0=0 \
M. = 0; —2Fup+ BFyc=0

Solving Egs. (1) and (2) simultaneously,

FAB = FAC = 8751b Ans.
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EXAMPLE|S5.18

Rod AB shown in Fig. 5-31ais subjected to the 200-N force. Determine
the reactions at the ball-and-socket joint A and the tension in the
cables BD and BE.The collar at C'is fixed to the rod.

SOLUTION (VECTOR ANALYSIS)
Free-Body Diagram. Fig. 5-31b.

Equations of Equilibrium. Representing each force on the free-body
diagram in Cartesian vector form, we have

F,=Ai+Aj+Ak
Tp = Tpj
F = {-200k} N

Applying the force equation of equilibrium.

(A, + Tpi + (A, + Tp)j + (A, — 200k = 0
SF, =0; A+ Ty =0 1)
SF, = 0; A+ Tp=0 @)
SF. =0 A —200 =0 3)

Summing moments about point A yields
IM, = 0; re XF+rg X (Tp+Tp) =0
Since rc = $rp, then
(0.5 + 1j — 1k) X (—200k) + (1i + 2j — 2k) X (T&i + Tpj) = 0
Expanding and rearranging terms gives

(2T — 200)i + (=2T5 + 100)j + (T, — 2Tk = 0

SM, = 0; 2T — 200 = 0 (4)
SM, = 0; —2T, + 100 = 0 (5)

Solving Egs. 1 through 5, we get

() Tp, = 100N Ans.
Fig. 5-31 Tg = 50N Ans.
A, = —-50N Ans.

A, = —100N Ans.

A, = 200N Ans.

NOTE: The negative sign indicates that A, and A, have a sense which
is opposite to that shown on the free-body diagram, Fig. 5-31b.
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EXAMPLE | S5.19

The bent rod in Fig. 5-32a is supported at A by a journal bearing, at D
by a ball-and-socket joint, and at B by means of cable BC. Using only
one equilibrium equation, obtain a direct solution for the tension in
cable BC. The bearing at A is capable of exerting force components
only in the z and y directions since it is properly aligned on the shaft.
In other words, no couple moments are required at this support.

SOLUTION (VECTOR ANALYSIS)

Free-Body Diagram. Asshown in Fig. 5-32b, there are six unknowns.

Equations of Equilibrium. The cable tension Tz may be obtained
directly by summing moments about an axis that passes through points
D and A. Why? The direction of this axis is defined by the unit vector
u, where

I'pg 1 1

_7_—7i—7j
DA V2 V2

= —0.7071i — 0.7071j
Hence, the sum of the moments about this axis is zero provided
SMpy =u-%( XF) =0
Here r represents a position vector drawn from any point on the axis

DA to any point on the line of action of force F (see Eq. 4-11). With 5
reference to Fig. 5-32b, we can therefore write

u-(rp X Tp + 1z X W) =0 0.5m>J = 981N

(—0.7071i — 0.7071) * [ (—1j) X (Tpk) 05m Db, ™
+ (—0.5j) X (-981k)] = 0 ' ’
(—0.7071i — 0.7071§) * [(— Ty + 490.5)i] = 0 (b)
—0.7071(=Ty + 490.5) + 0 + 0 = 0 Fig. 5-32
Ty = 490.5N Ans.

Since the moment arms from the axis to Ty and W are easy to obtain,
we can also determine this result using a scalar analysis. As shown in
Fig. 5-32b,
SMpy = 0; Tp(1msin45°) — 981 N(0.5 msin 45°) = 0
Ty = 490.5N Ans.
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. FUNDAMENTAL PROBLEMS

All problem solutions must include an FBD. F5-10. Determine the support reactions at the smooth
) ) ) journal bearings A, B, and C of the pipe assembly.
F5-7. The uniform plate has a weight of 500 Ib. Determine

the tension in each of the supporting cables.

F5-10

F5-11. Determine the force developed in the short link
F5-7 BD, and the tension in the cords CE and CF, and the
reactions of the ball-and-socket joint A on the block.
F5-8. Determine the reactions at the roller support A, the
ball-and-socket joint D, and the tension in cable BC for
the plate.

F5-8 F5-11

F5-9. The rod is supported by smooth journal bearings at
A, B, and C and is subjected to the two forces. Determine
the reactions at these supports.

F5-12. Determine the components of reaction that the
thrust bearing A and cable BC exert on the bar.

z Z
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“leropews

All problem solutions must include an FBD. *5-64. The wing of the jet aircraft is subjected to a thrust of
. Lo T = 8 kN from its engine and the resultant lift force L =
5-62. The uniform load has a mass of 600 kg and is lifted 45 kN. If the mass of the wing is 2.1 Mg and the mass center

using a uniform 30-kg strongback beam BAC and four ropes is at G, determine the x, y, z components of reaction where
as shown. Determine the tension in each rope and the force the wing is fixed to the fuselage A

that must be applied at A.

1.25m

125m
_J ]

y
L =45kN

Prob. 5-64
Prob. 5-62

5-65. Due to an unequal distribution of fuel in the wing
5-63. The 50-Ib mulching machine has a center of gravity tanks, the centers of gravity for the airplane fuselage A and
at G. Determine the vertical reactions at the wheels C and B wings B and C are located as shown. If these components have
and the smooth contact point A. weights W, = 45000 1b, Wz = 8000 Ib, and W, = 6000 b,

determine the normal reactions of the wheels D, E, and F on

the ground.

Prob. 5-65
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5-66.  The air-conditioning unit is hoisted to the roof of a
building using the three cables. If the tensions in the cables
are T, = 250 Ib, Tz = 300 b, and T = 200 1b, determine
the weight of the unit and the location (x, y) of its center of
gravity G.

X

5-67. The platform truck supports the three loadings shown.
Determine the normal reactions on each of its three wheels.

EQuiLIBRIUM OF A RIGID BoDY

*5-68. Determine the force components acting on the
ball-and-socket at A, the reaction at the roller B and the
tension on the cord CD needed for equilibrium of the quarter
circular plate.

Prob. 5-68

5-69. The windlass is subjected to a load of 150 Ib.
Determine the horizontal force P needed to hold the handle
in the position shown, and the components of reaction at the
ball-and-socket joint A and the smooth journal bearing B.
The bearing at B is in proper alignment and exerts only force
reactions on the windlass.

Prob. 5-67

Prob. 5-69
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5-70. The 100-1b door has its center of gravity at G. *5-72. The pole is subjected to the two forces shown.
Determine the components of reaction at hinges A and B if Determine the components of reaction of A assuming it to
hinge B resists only forces in the x and y directions and A be a ball-and-socket joint. Also, compute the tension in each
resists forces in the x, y, z directions. of the guy wires, BC and ED.

z

o

£
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=
=1

._.
o
o
B

N-
J

Prob. 5-72

Prob. 5-70 5-73. The boom AB is held in equilibrium by a ball-and-
socket joint A and a pulley and cord system as shown.
Determine the x, y, z components of reaction at A and the
tension in cable DEC if F = {—1500k}1b.

5-74. The cable CED can sustain a maximum tension of
800 Ib before it fails. Determine the greatest vertical force F
that can be applied to the boom. Also, what are the x, y, z
components of reaction at the ball-and-socket joint A?

5-71. Determine the support reactions at the smooth z
collar A and the normal reaction at the roller support B.

Prob. 5-71 Probs. 5-73/74
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5-75. 1If the pulleys are fixed to the shaft, determine the
magnitude of tension T and the x, y, z components of
reaction at the smooth thrust bearing A and smooth journal
bearing B.

Prob. 5-75

*5-76. The boom AC is supported at A by a ball-and-
socket joint and by two cables BDC and CE. Cable BDC is
continuous and passes over a pulley at D. Calculate the
tension in the cables and the x, y, z components of reaction
at A if a crate has a weight of 80 Ib.

<
4 ft

Prob. 5-76

EQuiLIBRIUM OF A RIGID BoDY

5-77. A vertical force of 80 Ib acts on the crankshaft.
Determine the horizontal equilibrium force P that must be
applied to the handle and the x, y, z components of reaction at
the journal bearing A and thrust bearing B. The bearings are
properly aligned and exert only force reactions on the shaft.

Prob. 5-77

5-78. Member AB is supported by a cable BC and at A by
a square rod which fits loosely through the square hole at
the end joint of the member as shown. Determine the
components of reaction at A and the tension in the cable
needed to hold the 800-Ib cylinder in equilibrium.

Prob. 5-78



5-79. The bent rod is supported at A, B, and C by smooth
journal bearings. Compute the x, y, z components of
reaction at the bearings if the rod is subjected to forces
F; =3001b and F, = 250 Ib. F; lies in the y—z plane. The
bearings are in proper alignment and exert only force
reactions on the rod.

*5-80. The bent rod is supported at A, B, and C by smooth
journal bearings. Determine the magnitude of F, which will
cause the reaction C, at the bearing C to be equal to zero.
The bearings are in proper alignment and exert only force
reactions on the rod. Set F; = 300 Ib.

51t

30° y
45°

F,
Probs. 5-79/80

5-81. The sign has a mass of 100 kg with center of mass at
G. Determine the x, y, z components of reaction at the ball-
and-socket joint A and the tension in wires BC and BD.

Prob. 5-81
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5-82. Determine the tensions in the cables and the
components of reaction acting on the smooth collar at A
necessary to hold the 50-1b sign in equilibrium. The center
of gravity for the sign is at G.

Prob. 5-82

5-83. Both pulleys are fixed to the shaft and as the shaft
turns with constant angular velocity, the power of pulley A
is transmitted to pulley B. Determine the horizontal tension
T in the belt on pulley B and the x, y, z components of
reaction at the journal bearing C and thrust bearing D if
0 = 0°.The bearings are in proper alignment and exert only
force reactions on the shaft.

*5-84. Both pulleys are fixed to the shaft and as the shaft
turns with constant angular velocity, the power of pulley A
is transmitted to pulley B. Determine the horizontal tension
T in the belt on pulley B and the x, y, z components of
reaction at the journal bearing C and thrust bearing D if
0 = 45°. The bearings are in proper alignment and exert
only force reactions on the shaft.

S0N

65Nl

80N

Probs. 5-83/84
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. CHAPTER REVIEW

Equilibrium

A body in equilibrium is at rest or can translate
with constant velocity.

- /

XM =0

F;

Two Dimensions

Before analyzing the equilibrium of a body, it is
first necessary to draw its free-body diagram.
This is an outlined shape of the body, which
shows all the forces and couple moments that
act on it.

Couple moments can be placed anywhere on a
free-body diagram since they are free vectors.
Forces can act at any point along their line of
action since they are sliding vectors.

Angles used to resolve forces, and dimensions
used to take moments of the forces, should also
be shown on the free-body diagram.

Some common types of supports and their
reactions are shown below in two dimensions.

Remember that a support will exert a force on
the body in a particular direction if it prevents
translation of the body in that direction, and it
will exert a couple moment on the body if it
prevents rotation.

/

roller

The three scalar equations of equilibrium can be
applied when solving problems in two
dimensions, since the geometry is easy to
visualize.

1m o
B 30
‘L 2m -| 500 N-m
AX < _r,'w FBC
¢ Im 30°
A, y

smooth pin or hinge fixed support

SF.=0
SF, =0
EM():O
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For the most direct solution, try to sum forces along
an axis that will eliminate as many unknown forces
as possible. Sum moments about a point A that
passes through the line of action of as many
unknown forces as possible.

Three Dimensions

Some common types of supports and their reactions
are shown here in three dimensions.

: /4

v

In three dimensions, it is often advantageous to use a
Cartesian vector analysis when applying the
equations of equilibrium. To do this, first express
each known and unknown force and couple moment
shown on the free-body diagram as a Cartesian
vector. Then set the force summation equal to zero.
Take moments about a point O that lies on the line
of action of as many unknown force components as
possible. From point O direct position vectors to
each force, and then use the cross product to
determine the moment of each force.

roller ball and socket

The six scalar equations of equilibrium are
established by setting the respective i, j, and k
components of these force and moment summations
equal to zero.

Determinacy and Stability

If a body is supported by a minimum number of
constraints to ensure equilibrium, then it is
statically determinate. If it has more constraints
than required, then it is statically indeterminate.

To properly constrain the body, the reactions must
not all be parallel to one another or concurrent.

SF, = 0; lPl
AX_PZZO Ax:PZ P
d 2
M, = 0 A, o Fa,
P2d2+BydB_P1d1:0 AdB T
y
B_Pldl_PZdZ B}’
y dB
FZ
F/ F
fixed support
SF=0
EMO =0
SF, =0 SM, =0
EFy =0 EMy =0
2F. =0 XM, =0
500 N 600 N 200 N
2KkN-m l
|
=0 =0
Statically indeterminate,
five reactions, three
equilibrium equations 100 N
Proper constraint, statically determinate




260 CHAPTER 5 EQUILIBRIUM OF A RiGID BopY

' | REVIEW PROBLEMS

5-85. If the roller at B can sustain a maximum load of 5-87. The symmetrical shelf is subjected to a uniform load
3 kN, determine the largest magnitude of each of the three of 4 kPa. Support is provided by a bolt (or pin) located at
forces F that can be supported by the truss. each end A and A’ and by the symmetrical brace arms,

which bear against the smooth wall on both sides at B and
B’.Determine the force resisted by each bolt at the wall and
the normal force at B for equilibrium.

4 kPa

!

A 1.5m
=
0.15 m
B
l‘o.z mM

Prob. 5-87

Prob. 5-85

*5-88. Determine the x and z components of reaction at
the journal bearing A and the tension in cords BC and BD
necessary for equilibrium of the rod.

5-86. Determine the normal reaction at the roller A and
horizontal and vertical components at pin B for equilibrium
of the member.

10 kN

~—0.6 m—}——0.6 m—ﬂ
[°)

Prob. 5-86 Prob. 5-88



5-89. The uniform rod of length L and weight W is
supported on the smooth planes. Determine its position 6
for equilibrium. Neglect the thickness of the rod.

Prob. 5-89

5-90. Determine the x, y, z components of reaction at the
ball supports B and C and the ball-and-socket A (not
shown) for the uniformly loaded plate.

2 1b /2
RXXZX! .
A 4

y

4 ft

2 ft

1 ft
2 ft

Prob. 5-90
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5-91. Determine the x, y, z components of reaction at the
fixed wall A.The 150-N force is parallel to the z axis and the
200-N force is parallel to the y axis.

150 N

Prob. 5-91

*5-92. Determine the reactions at the supports A and B
for equilibrium of the beam.

400 N/m

Prob. 5-92




