Principles of Statistics for Admin. (15060105)

Linear Correlation Coefficient

And

Simple Linear Regression

Independent Versus dependent variable:

X: independent (explanatory) variable

The independent variable is the cause. Its value is independent of other variables in your study.

Y: dependent (response) variable

The dependent variable effected by the independent variable. Its value depends on changes in the independent variable.

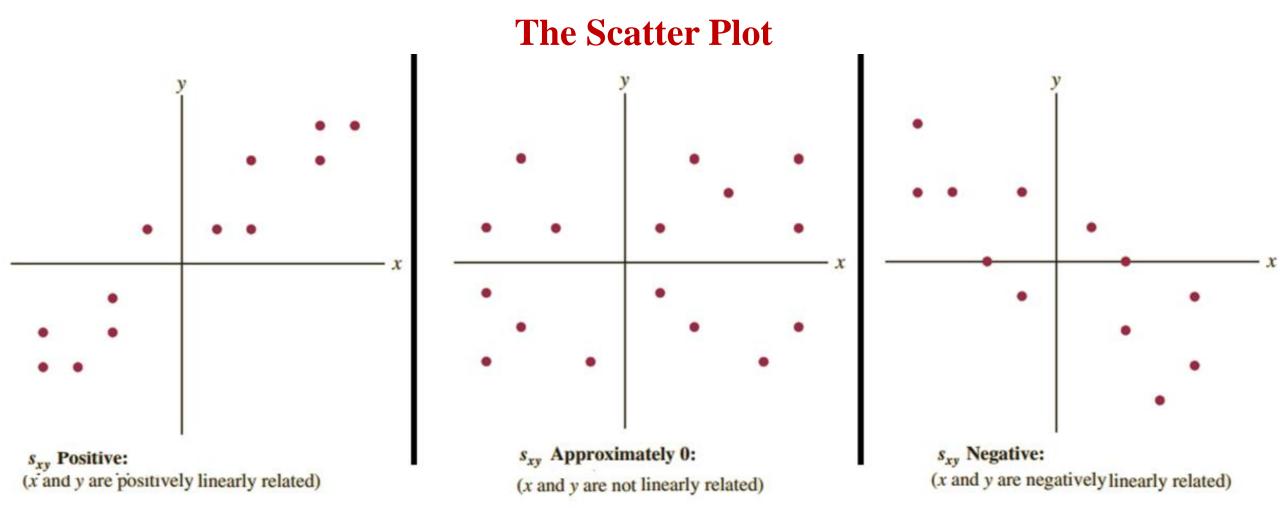
Example:

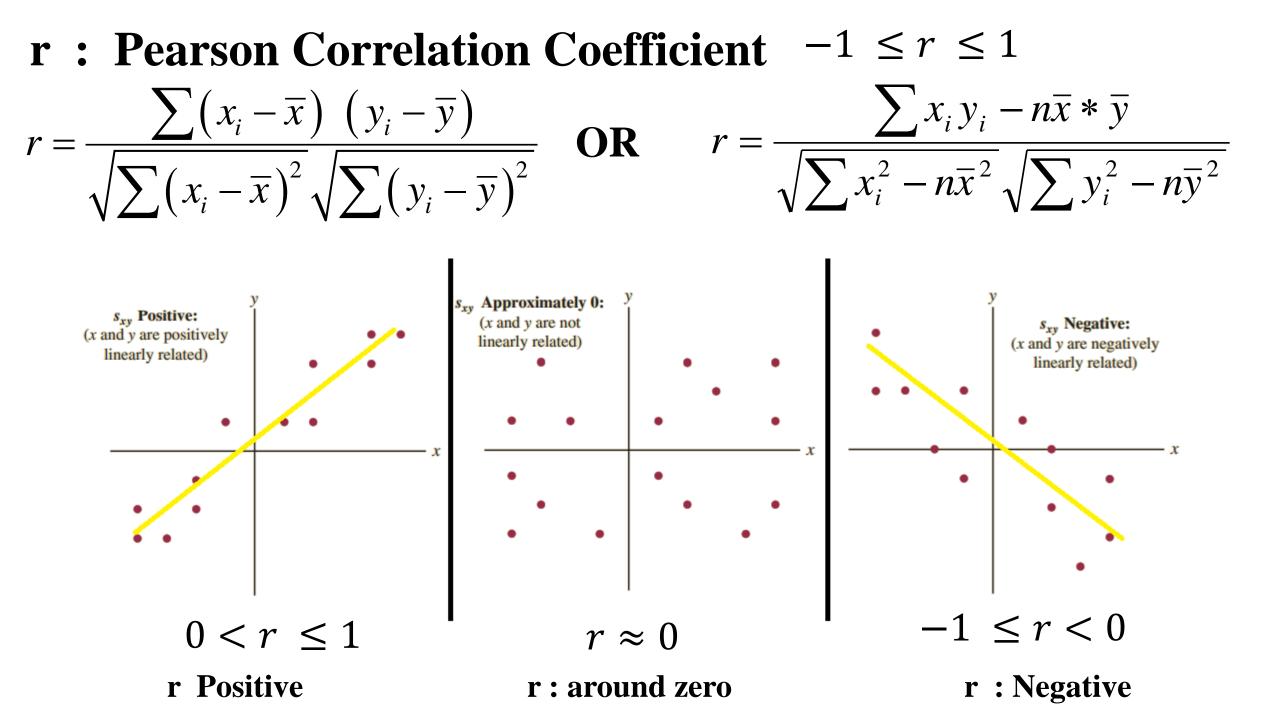
Determine independent and dependent variables:

An insurance company wants to predict sales from the amount of money they spend on advertising.

Correlation Coefficient

X: independent (explanatory) variable Y: dependent (response) variable

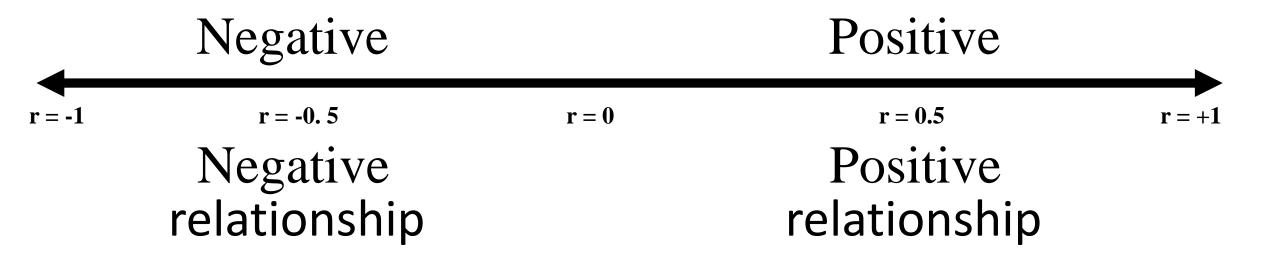




r : Pearson Correlation Coefficient

r : <u>Pearson</u> Correlation Coefficient used to measure the <u>linear</u> relationship between two <u>quantitative</u> variable

The correlation coefficient (r) ranges from -1 to +1. $-1 \le r \le 1$ Values close to -1 or +1 indicate a strong linear relationship. The closer the correlation is to zero, the weaker the relationship.



Here,

Some examples of the correlation coefficient measure values

r = 0.00 >>Means>> No Linear Relationship

r = -1>>> Complete and negative linear relationshipr = -0.98>>> Strong and negative linear relationshipr = -0.5>>> Moderate and negative linear relationshipr = -0.25>>> Weak and negative linear relationship

r = +1>>>> Complete and positive linear relationshipr =+ 0.95>>>> Strong and positive linear relationshipr =+ 0.5>>> Moderate and positive linear relationshipr =+ 0.34>>> Weak and positive linear relationship

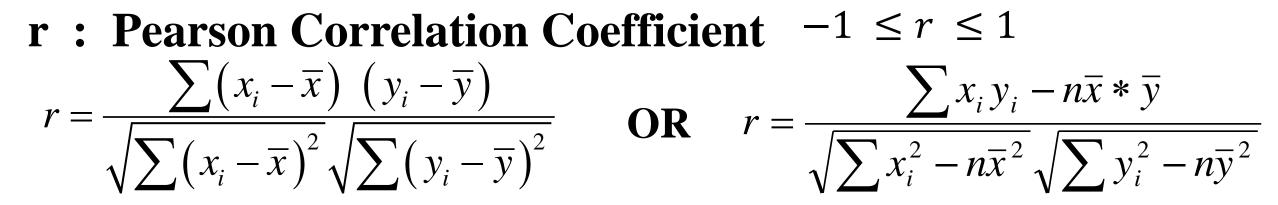
Note about the correlation coefficient measure (r):

If r=0.00, this implies that there is no linear relationship between variables X & Y but there may be some other non-linear relationship.

Hence, r=0.00 doesn't necessarily imply that the two variables are independent.

So, if X & Y are independent variables >> Then: r = 0.00

But if r = 0.00, we can't said: X & Y are independent variables



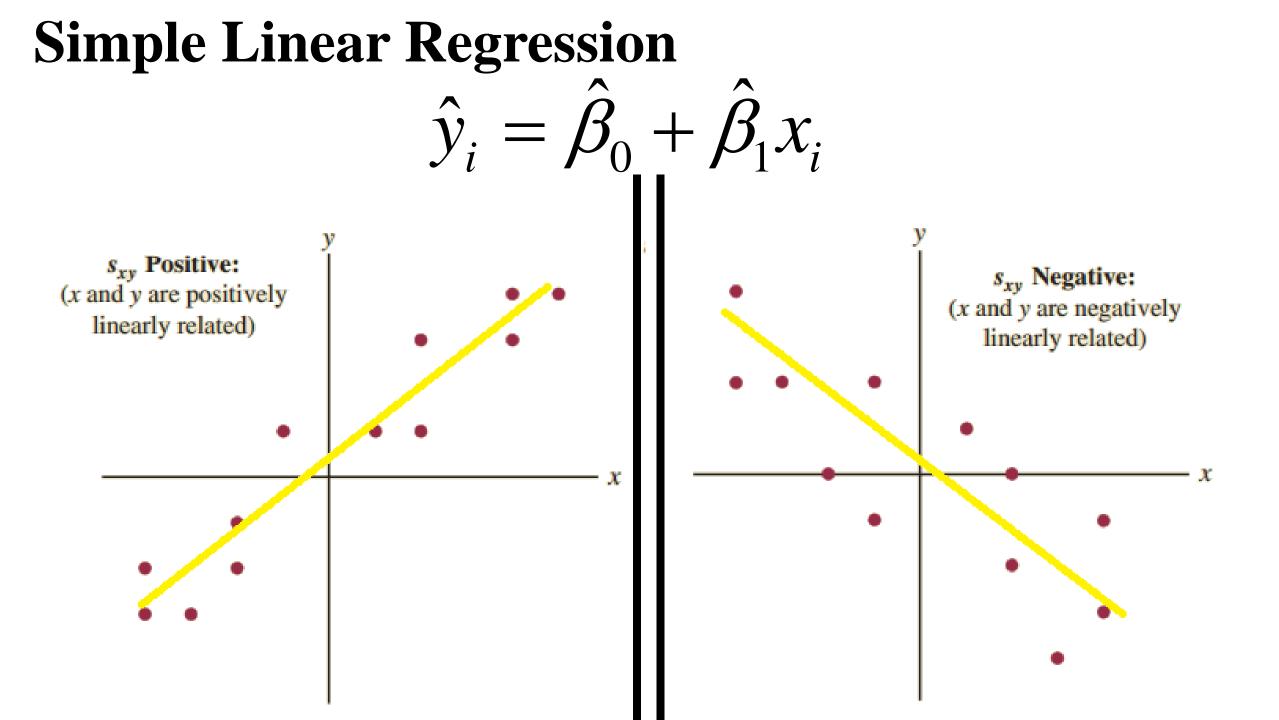
Example: Compute Pearson Correlation Coefficient

Х	4	6	28	6
Y	5	8	14	9

Answer

Answe	er	-		-				$\nabla ($ $-) ($ $-)$
	X	Y	$(\mathbf{X} \cdot \overline{\mathbf{x}})$	$(\mathbf{X}-\overline{\mathbf{x}})^2$	$(\mathbf{Y} - \overline{\mathbf{y}})$	$(\mathbf{Y} - \overline{\mathbf{y}})^2$	$(\mathbf{X} \cdot \overline{\mathbf{x}})(\mathbf{Y} \cdot \overline{\mathbf{y}})$	$r = \frac{\sum (x_i - x) (y_i - y)}{\sum (x_i - x) (y_i - y)}$
	4	5	-7	49	-4	16	28	$\int \sqrt{\sum (x_i - \overline{x})^2} \sqrt{\sum (y_i - \overline{y})^2}$
	6	8	-5	25	-1	1	5	$\sqrt{\sum (x_i - x)} \sqrt{\sum (y_i - y)}$
	28	14	17	289	5	25	85	118 0.0040.000
	6	9	-5	25	0	0	0	$r = \frac{110}{\sqrt{388}\sqrt{42}} = 0.9243608$
Total	44	36	0	388	0	42	118	= 0.92

r = **0.92** >>> Strong and positive linear relationship

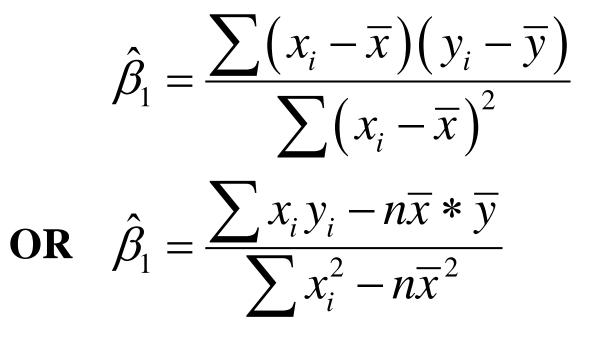


Linear Regression

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Estimation Error (residual): $e = y - \hat{y}$

 $\hat{\beta}_1$: Slope of the Regression Line



 $\hat{\beta}_0$: intercept of the Regression Line

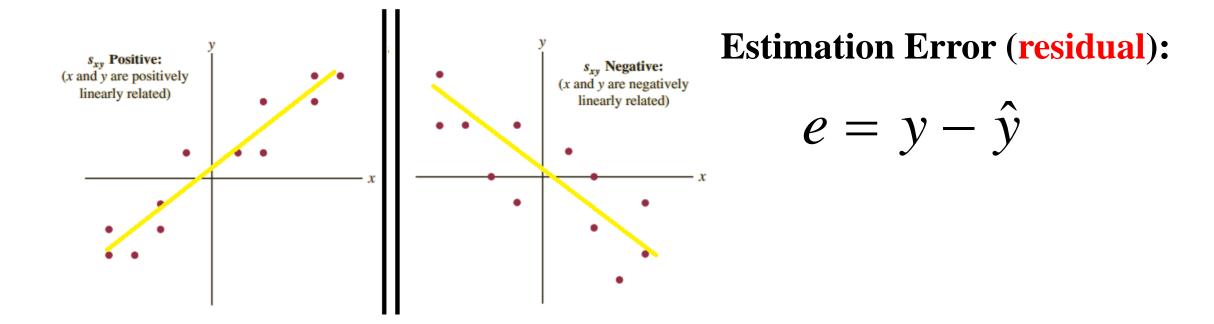
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Note:

The sign of the linear regression <u>Slope</u> AND the sing of <u>Pearson correlation</u> coefficient <u>are same</u>

Exercise:

Based on the following two cases : Determine when the error of estimation (residual) is a positive and when it is a negative.



Example:

For the following values Find:

X	4	6	28	6
Y	5	8	14	9

- a) Pearson correlation coefficient (r)
- **b)** The relation type and strength
- c) The linear regression equation $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- d) The regression estimate at x = 0
- e) The regression estimate at x = 6
- f) The regression estimate at x = 4
- g) The error of regression estimate at x = 4

Answ	ver						$\hat{\rho} = \sum (x_i - \overline{x}) (y_i)$
	X	Y	$(\mathbf{X} \cdot \overline{\mathbf{x}})$	$(\mathbf{X}-\overline{\mathbf{x}})^2$	$(\mathbf{Y} - \overline{\mathbf{y}})$	$(\mathbf{X} \cdot \overline{\mathbf{x}})(\mathbf{Y} \cdot \overline{\mathbf{y}})$	$p_1 \equiv - $
	4	5	-7	49	-4	28	$\sum (x_i - \overline{x})$
	6	8	-5	25	-1	5	
	28	14	17	289	5	85	$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 9 - $
	6	9	-5	25	0	0	
Total	44	36	0	388	0	118	

c) The linear regression equation is:

$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum (x_{i} - \overline{x})^{2}} = \frac{118}{388} = 0.304$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 9 - (0.308)(11) = 5.612$$

$$\hat{y}_i = 5.61 + 0.304 x_i$$

Answer

- a) Pearson correlation coefficient (r = 0.92)
- b) The relation type and strength : is strong and positive linear relationship
- c) The linear regression equation $\hat{y}_i = 5.61 + 0.304 x_i$
- d) The regression estimate at x = 0 is $\hat{y} = 5.61 + 0.304(0) = 5.61$
- e) The regression estimate at x = 6 is $\hat{y} = 5.61 + 0.304(6) = 7.434$
- f) The regression estimate at x = 4 is $\hat{y} = 5.61 + 0.304(4) = 6.862$

g) The error of regression estimate at x = 4 is $e = y - \hat{y} = 5 - 6.862 = -1.826$

Example:

Based on the following data values Find:

$$n = 6, \overline{x} = 9, \overline{y} = 8, \sum x_i^2 = 930, \sum y_i^2 = 446, \sum x_i y_i = 582$$

- a) Pearson correlation coefficient (r)
- **b)** The relation type and strength
- c) The linear regression equation
- d) The regression estimate at x = 0
- e) The regression estimate at x = 6
- f) The regression estimate at x = 3
- g) The error of regression estimate at x = 3, if y=4

Х	4	3	7	6	28	6
Y	5	4	8	8	14	9

$$r = \frac{\sum x_i y_i - n\overline{x} * \overline{y}}{\sqrt{\sum x_i^2 - n\overline{x}^2} \sqrt{\sum y_i^2 - n\overline{y}^2}} = \frac{582 - (6)(9)(8)}{\sqrt{930 - (6)(9^2)} \sqrt{446 - (6)(8^2)}} = 0.904$$

$$\hat{\beta}_1 = \frac{\sum x_i y_i - n\overline{x} * \overline{y}}{\sum x_i^2 - n\overline{x}^2} = \frac{582 - (6)(9)(8)}{930 - (6)(9^2)} = \frac{150}{444} = 0.338$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 8 - (0.338)(9) = 4.96$$
 $\hat{y}_i = 4.96 + 0.338 x_i$

Answer:

- a) Pearson correlation coefficient (r = 0.904)
- b) The relation type and strength : is strong and positive linear relationship
- c) The linear regression equation $\hat{y}_i = 4.96 + 0.338x_i$
- d) The regression estimate at $\mathbf{x} = \mathbf{0} \ \hat{y}_i = 4.96$
- e) The regression estimate at x = 6 $\hat{y}_i = 4.96 + 0.338(6) = 6.99$
- f) The regression estimate at $x = 3 \hat{y}_i = 4.96 + 0.338(3) = 5.974$
- g) The error of regression estimate at x = 3, if y=4 $e = y \hat{y} = 4 5.974 = -1.974$

The coefficient of determination (R^2) :

is the square of the Pearson correlation (r) it ranges $0 < R^2 < 1$

The coefficient of determination (R^2) :

is a measurement used to explain how much <u>variability</u> of dependent variable Y can be caused by its relationship to independent variable X.

Ex. If the Pearson correlation (r=0.9) then $R^2 = (0.9)^2 = 0.81 = 81\%$ this means that:

The independent variable is explained about 81% of the variation of the dependent variable Y. And <u>19% of the dependent variable variation comes from another factor(s)</u>.

Ex. Assuming the regression equation is $\hat{y}_i = 0.2 - 1.5x_i$, If the coefficient of determination is (R^2 =0.64). Then Pearson correlation (r) is: a) 0.8 b) -0.8 c) 0.64 d) -0.64 e) 0.2 f) -0.2

Example:

Based on the following data values Find:

- a) Pearson correlation coefficient (r)
- b) The relation type and strength
- c) The linear regression equation
- d) What is the slope of the linear regression line
- e) The regression estimate at x = 0
- f) What is the value of Y that the linear regression line intercept Y-axis
- g) What is the value of X that the linear regression line intercept X-axis
- h) The regression estimate at x = 8
- i) The error of regression estimate at x = 8,
- j) What is the percent of X variable interpret the variation of variable Y (How much the coefficient of determination)?

Х	20	8	12	14	24
Υ	2	5	7	8	2