
®

IBM Software Group

© 2005 IBM Corporation

Introduction to UML 2.0

Terry Quatrani
UML Evangelist

IBM Software Group

2

Session Objectives

! After completing this session, you should be able to:
!Identify the different UML diagrams
!Describe the purpose of each diagram
!State where diagrams can be used

IBM Software Group

3

Agenda

! The Importance of Modeling

! The Unified Modeling Language

! Model-Driven Architecture

! UML Diagrams

! Extending the UML

IBM Software Group

4

Agenda

! The Importance of Modeling

! The Unified Modeling Language

! Model-Driven Architecture

! UML Diagrams

! Extending the UML

IBM Software Group

5

The Importance of Modeling

IBM Software Group

6

Why do we model?

! To manage complexity

! To detect errors and omissions early in the lifecycle

! To communicate with stakeholders

! To understand requirements

! To drive implementation

! To understand the impact of change

! To ensure that resources are deployed
efficiently

IBM Software Group

7

Agenda

! The Importance of Modeling

! The Unified Modeling Language

! Model-Driven Architecture

! UML Diagrams

! Extending the UML

IBM Software Group

8

The Unified Modeling Language

! The UML is the standard
language for visualizing,
specifying, constructing,
and documenting the
artifacts of a software-
intensive system

IBM Software Group

9

UML: The Language of Software Development

UML 1.0UML partners

UML 2.0Adopted major revision (2004)

Public
Feedback

Unified Method 0.8OOPSLA 95

OMTBooch methodOOSEOther methods

Web - June 1996 UML 0.9

OMG Acceptance, Nov 1997
Final submission to OMG, Sept 1997 UML 1.1

Minor revision 1999 UML 1.3

Current minor revision 2001 UML 1.5
Grady

Jim

Ivar

Blobs with writing in their hair
And small adornments in the air
And has-relations everywhere
I've looked at clouds that way.

But now I've purged them from my Sun
Eliminated every one

So many things I would have done
To drive the clouds away.

I've looked at clouds from both sides now
Both in and out, and still somehow

It's clouds' delusions I appall
I really can't stand clouds at all…

Balls for multiplicity
Black and white for clarity

And data flows arranged in trees
Were part of OMT.

But now I've had to let them go
We'll do it differently, you know

'Cause Grady said, they've got to go
We can't use OMT.

IBM Software Group

10

Approach to Evolving UML 2.0

! Evolutionary rather than revolutionary

! Improved precision of the infrastructure

! Small number of new features

! New feature selection criteria
!Required for supporting large industrial-scale applications
!Non-intrusive on UML 1.x users (and tool builders)

! Backward compatibility with 1.x

IBM Software Group

11

Formal RFP Requirements

! Infrastructure – UML internals
!More precise conceptual base for better MDA support
!MOF-UML alignment

! Superstructure – User-level features
!New capabilities for large-scale software systems
!Consolidation of existing features

! OCL – Constraint language
!Full conceptual alignment with UML

! Diagram interchange standard
!For exchanging graphic information (model diagrams)

IBM Software Group

12

Infrastructure Requirements

! Precise MOF alignment
!Fully shared “common core” metamodel

! Refine the semantic foundations of UML (the UML metamodel)
!Improve precision
!Harmonize conceptual foundations and eliminate semantic overlaps
!Provide clearer and more complete definition of instance semantics

(static and dynamic)

IBM Software Group

13

OCL Requirements

! Define an OCL metamodel and align it with the UML
metamodel
!OCL navigates through class and object diagrams ⇒ must share a

common definition of Class, Association, Multiplicity, etc.

! New modeling features available to general UML users
!Beyond constraints
!General-purpose query language

IBM Software Group

14

Diagram Interchange Requirements

! Ability to exchange graphical information between tools
!Currently only non-graphical information is preserved during model

interchange
!Diagrams and contents (size and relative position of diagram

elements, etc.)

IBM Software Group

15

Superstructure Requirements (1 of 2)

! More direct support for architectural modeling
!Based on existing architectural description languages

(UML-RT, ACME, SDL, etc.)
!Reusable interaction specifications (UML-RT protocols)

! Behavior harmonization
!Generalized notion of behavior and causality
!Support choice of formalisms for specifying behavior

! Hierarchical interactions modeling

! Better support for component-based development

! More sophisticated activity graph modeling
!To better support business process modeling

IBM Software Group

16

Superstructure Requirements (2 of 2)

! New statechart capabilities
!Better modularity

! Clarification of semantics for key relationship types
!Association, generalization, realization, etc.

! Remove unused and ill-defined modeling concepts

! Clearer mapping of notation to metamodel

! Backward compatibility
!Support 1.x style of usage
!New features only if required

IBM Software Group

17

Language Architecture

! A core language + a set of optional “language units”
! Some language units have multiple “levels”

OCLOCL

Basic UMLBasic UML
(Classes, Basic behavior, Internal structure, Use cases…)(Classes, Basic behavior, Internal structure, Use cases…)

MOFMOF ProfilesProfiles

StateState
MachinesMachines

StructuredStructured
Classes andClasses and
ComponentsComponents

ActivitiesActivities InteractionsInteractions DetailedDetailed
ActionsActions

FlowsFlows

Level 1Level 1

Level 2Level 2

Level 3Level 3

UML InfrastructureUML Infrastructure

Multiple levels of
compliance

Multiple levels of Multiple levels of
compliancecompliance

IBM Software Group

18

The UML 2.0 Specification

! Can be downloaded from
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

IBM Software Group

19

Agenda

! The Importance of Modeling

! The Unified Modeling Language

! Model-Driven Architecture

! UML Diagrams

! Extending the UML

IBM Software Group

20

Model-Driven Architecture (MDA)

! An OMG initiative to support model-driven development
through a series of open standards

(1) ABSTRACTION (2) AUTOMATION

(3) OPEN STANDARDS
• Modeling languages
• Interchange facilities
• Model transformations
• Software processes
• etc.

(3) OPEN STANDARDS
• Modeling languages
• Interchange facilities
• Model transformations
• Software processes
• etc.

(3) OPEN STANDARDS
• Modeling languages
• Interchange facilities
• Model transformations
• Software processes
• etc.

(3) OPEN STANDARDS
• Modeling languages
• Interchange facilities
• Model transformations
• Software processes
• etc.

MDA

IBM Software Group

21

The Languages of MDA
! Set of modeling languages for specific purposes

MetaObject
Facility (MOF)
MetaObjectMetaObject

Facility (MOF)Facility (MOF)

A modeling language
for defining modeling
languages

MOF
“core”
MOFMOF

“core”“core”

General
Standard UML

GeneralGeneral
Standard UMLStandard UML

Common
Warehouse

Metamodel (CWM)

Common Common
Warehouse Warehouse

Metamodel (CWM)Metamodel (CWM)

etc.etc.etc.

General-purpose
modeling language

For exchanging
information about
business and data

Real-Time
profile

RealReal--TimeTime
profileprofile

EAI profileEAI profileEAI profile

Software
process profile

SoftwareSoftware
process profileprocess profile

etc.etc.etc.

UML
“bootstrap”

IBM Software Group

22

MOF (Metamodel) Example

! Uses (mostly) class diagram concepts to define
! Language concepts
! Relationships between concepts

*
Relationship

Element

*

0..1

/ownedE lement
*

/owner0..1

DirectedRelationship

CommentElement

1..*

/source

1..*

1..*

/target

1..*

*
1..*1..*

IBM Software Group

23

Agenda

! The Importance of Modeling

! The Unified Modeling Language

! Model-Driven Architecture

! UML Diagrams

! Extending the UML

IBM Software Group

24

Meta-models and Notations

IBM Software Group

25

StructuralFeature
(from StructuralFeatures)

Element
(from Ownerships)

NamedElement
(from Namespaces)

ValueSpecification
(from Expressions)

InstanceValue

InstanceSpecification

1instance 1

Va lueSpe ci ficat ion
(from Expressions)Slot*

1

slot *

{subsets
ownedElement}

owningInstance

1

{subsets owner}

1

definingFeature

1

*0..1

val ue

*
{ordered,
subsets

ownedElement}

owningSlot

0..1

{subsets owner}

1..*

classifier

1..*
Classifier

(from Classifiers)

Metamodel Description of Objects

Object IdentifierObject IdentifierObject Identifier

ObjectObjectObject

IBM Software Group

26

Metamodel Structure

Different Behavior
Formalisms

Different BehaviorDifferent Behavior
FormalismsFormalisms

Structure-Behavior
Dependency

StructureStructure--BehaviorBehavior
DependencyDependency

Shared Behavior
Semantics

Shared Behavior Shared Behavior
SemanticsSemantics

IBM Software Group

27

Diagram Elements
! Each diagram has a frame, a content area

and a heading

! The frame is a rectangle and is used to
denote a border
!Frame is optional

! The heading is a string contained in a
name tag which is a rectangle with cut off
corners in the upper left hand corner of the
frame
!Format [<kind>] [<name>] [<parameters>]
!<kind> can be activity, class, component,

interaction, package, state machine, use
case

<kind> <name> <parameters>

IBM Software Group

28

Frame Example

Package P

Class 1 Class 2

IBM Software Group

29

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

30

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

31

Activities

! Significantly enriched in UML 2.0 (relative to UML 1.x activities)
!More flexible semantics for greater modeling power (e.g., rich

concurrency model based on Petri Nets)
!Many new features

! Major influences for UML 2.0 activity semantics
!Business Process Execution Language for Web Services

(BPEL4WS) – a de facto standard supported by key industry
players (Microsoft, IBM, etc.)

!Functional modeling from the systems engineering community
(INCOSE)

IBM Software Group

32

Activity Diagram

! Activity diagrams show flow of control and data flow

! Typically used to model
!Business process workflow
!Flow within a use case
!Business rules logic
!Functional processes
!UI screen flows

[condition 1]

[condition 3]

IBM Software Group

33

Activity Diagram

Flight Selection «post condition» Flight selected

Enter Departure
Airport

Departure
Airport

Lookup City

List of
Alternatives Select Flight

[found > 1
flight]

[found 0 flights]

[found 1 flight]

Cancel
Request Cancel

Selection

IBM Software Group

34

C
om

pa
ny

C
us

to
m

er

A
cc

ou
nt

in
g

O
rd

er
D

ep
ar

tm
en

t

Partitioning capabilities

Receive
order

Fill
order

Ship
order

Send
invoice

Make
payment

Invoice

Accept
payment

Close
order

Seattle Reno

IBM Software Group

35

C
om

pa
ny

A
cc

ou
nt

in
g

O
rd

er
D

ep
ar

tm
en

t

C
us

to
m

er

Partitioning capabilities

Receive
order

Fill
order

Ship
order

Send
invoice

Make
payment

Accept
payment

Close
order

Seattle Reno

Invoice

IBM Software Group

36

Activities: Basic Notational Elements
Control/Data FlowControl/Data Flow

Activity or ActionActivity or Action

Object NodeObject Node
(may include state)(may include state)

Pin (Object)Pin (Object)

ChoiceChoice

Control ForkControl Fork

Control JoinControl Join

Initial NodeInitial Node

Activity FinalActivity Final

Flow FinalFlow Final

(Simple) Join(Simple) Join

IBM Software Group

37

A

B

X

C

Z

Y

Extended Concurrency Model

! Fully independent concurrent streams (“tokens”)

“Tokens” represent
individual execution
threads (executions of
activities)

NB: Not part of the
notation

“Tokens” represent
individual execution
threads (executions of
activities)

NB: Not part of the
notation

Concurrency joinConcurrency join
Concurrency forkConcurrency fork

Valid output streams:
ABCXYZ
AXYBCZ
ABXCYZ
AXBYCZ
ABXYCZ
AXBCYZ

IBM Software Group

38

Activity 3Activity 2

Activities: Token Queuing Capabilities
! Tokens can

!queue up in “in/out” pins
!backup in network
!prevent upstream behaviors from taking new inputs

! …or, they can flow through continuously
!taken as input while behavior is executing
!given as output while behavior is executing
!identified by a {stream} adornment on a pin or object node

IBM Software Group

39

Actions in UML

! Action = fundamental unit of behavior
!for modeling fine-grained behavior
!Level of traditional programming languages

! UML defines:
!A set of action types
!A semantics for those actions
! i.e. what happens when the actions are executed
! Pre- and post-condition specifications (using OCL)

!No concrete syntax for individual kinds of actions (notation)
! Flexibility: can be realized using different concrete languages

! In UML 2, the metamodel of actions was consolidated
!Shared semantics between actions and activities (Basic Actions)

IBM Software Group

40

ActivityNode
(context)
ActivityNode
(context)

VariableAVariableAVariableA

.

.

.

.

.

.

Object Behavior Basics
! Support for multiple computational

paradigms

.

.

.

.

.

.Action1Action1
.
.
.

.

.

.Action3Action3

.

.

.

.

.

.Action2Action2

Input PinInput Pin
(typed)(typed)

OutputPinOutputPin
(typed)(typed) Control FlowControl FlowControl Flow

Data FlowData Flow

IBM Software Group

41

Categories of Actions

! Communication actions (send, call, receive,…)

! Primitive function action

! Object actions (create, destroy, reclassify,start,…)

! Structural feature actions (read, write, clear,…)

! Link actions (create, destroy, read, write,…)

! Variable actions (read, write, clear,…)

! Exception action (raise)

IBM Software Group

42

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use Case
Diagrams

Use Case
Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

43

Use Case Diagram

! Use case diagrams are created to visualize the relationships
between actors and use cases

! Use cases are a visualization the functional requirements of a
system

IBM Software Group

44

Actors

! An actor is someone or some thing that must interact with the
system under development

Passenger Bank

IBM Software Group

45

Use Cases

! A use case is a pattern of behavior the system exhibits
!Each use case is a sequence of related transactions performed by

an actor and the system in a dialogue

! Actors are examined to determine their needs
!Passenger – Search for Flights, Make Reservation, Pay for Flight
!Bank -- receive payment information from Pay for Flight

Pay for FlightSearch for Flights Make Reservation

IBM Software Group

46

Documenting Use Cases

! A use case specification document is created for each use
cases
!Written from an actor point of view

! Details what the system must provide to the actor when the use
cases is executed

! Typical contents
!How the use case starts and ends
!Normal flow of events
!Alternate flow of events
!Exceptional flow of events

IBM Software Group

47

Use Case Diagram

Search for flights

Make reservation

Pay for Flight

Select seat

Passenger

Bank

Extension points
Seat Selection

«extend»

Condition: {seat
Selection available on flight}
Extension point: Seat Selection

Flight Reservation System

«include»

IBM Software Group

48

UML 2.0 Changes

! No notational changes for use case diagrams in UML 2.0

IBM Software Group

49

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

50

Interaction Diagrams

! Interaction diagrams show the communication behavior
between parts of the system

! Four types of diagrams
!Sequence diagram
! Emphasis on the sequence of communications between parts

!Communication diagram
! Emphasis on structure and the communication paths between

parts
!Timing diagram
! Emphasis on change in state over time

!Interaction overview diagram
! Emphasis on flow of control between interactions

IBM Software Group

51

Sequence Diagram

: Customer reservation
system

reservation
manager

Make reservation

Enter PIN

verify PIN(number)

Destination

Ask for destination

valid

Destination

Show flights (destination)

destination

IBM Software Group

52

Framed Sequence Diagram

: Customer reservation
system

reservation
manager

destination

Make reservation
Enter PIN

verify PIN(number)

Destination

Ask for destination
valid

Destination

Show flights (destination)

SD Make Reservation

IBM Software Group

53

: Customer reservation
manager

destinationreservation
system

CheckPin
ref

Composite Diagrams

Make reservation

Destination

Ask for destination

Destination

Show flights (destination)

SD Make Reservation

reservation
manager

verify PIN(number)

valid

: Customer reservation
system

Enter PIN

SD Check PIN

Enter PIN

verify PIN(number)
valid

IBM Software Group

54

Combined Fragment Types

! Alternatives (alt)
!choice of behaviors – at most one will execute
!depends on the value of the guard (“else” guard supported)

! Option (opt)
!Special case of alternative

! Loop (loop)
!Optional guard: [<min>, <max>, <Boolean-expression>]
!No guard means no specified limit

! Break (break)
!Represents an alternative that is executed instead of the remainder

of the fragment (like a break in a loop)

IBM Software Group

55

Combined Fragment Types

! Parallel (par)
!Concurrent (interleaved) sub-scenarios

! Negative (neg)
!Identifies sequences that must not occur

! Assertion (assert)
!This must happen

! Critical Region (region)
!Traces cannot be interleaved with events on any of the participating

lifelines

IBM Software Group

56

alt

Combined Fragments Diagram

client: atm: dbase:
insertCard

CheckPinref

[chk= OK]

[else]
error(badPIN)

DoTransactionref

SD Make Reservation

IBM Software Group

57

Communication Diagram Example

:Flight DB

:Web
Server

:Web
Client

1approve flights

1.1 approve
flights1.2 confirm

flights

sd Reserve Flights

1.3 confirm flights

2 pay

2.1 receipt

IBM Software Group

58

sdsd ReaderReader

r : Reader

t1

Timing Diagram Example

Reading

Idle

Uninitialized
Initialize

Read ReadDone Read

{d..d+0.5}

{t1..t1+0.1}

IBM Software Group

59

Interaction Overview Example

! Like flow charts
! Use activity graph notation for

control constructs

! Better overview of complex
interactions
! Alternatives, options etc.

! Multiple diagram types could
be included/referenced

sd OverviewDiagram lifelines Client, :Server

Authorizationref

sd
:Client:Client :Server:Server

requestrequest

DoMoreref

[more]

~[more]

IBM Software Group

60

UML 2.0 Changes

! Interaction occurrences and combined fragments added

! Communication diagrams created to replace collaboration
diagrams used to show interactions

! New diagrams: Timing Diagram and Interaction Overview
Diagram

IBM Software Group

61

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams

Class
Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

62

Class Diagram

! Class diagrams show static structure
!This is the diagram that is used to generate code

IBM Software Group

63

Classes

! A class defines a set of objects with common structure,
common behavior, common relationships and common
semantics

! Classes can be “discovered” by examining the objects in
sequence and collaboration diagram

! A class is drawn as a rectangle with three compartments

! Classes should be named using the vocabulary of the domain
!Naming standards should be created
!e.g., all classes are singular nouns starting with a capital letter

IBM Software Group

64

Classes

PassengerInterface

«interface»
IPerson

Mailer

Reservation

Seat

Passenger

CorporatePassenger

Flight

ReservationManager

IBM Software Group

65

Operations

! The behavior of a class is represented by its operations
! Operations may be found by examining interaction diagrams

:ReservationManager :Reservation

Assign seat row and position
Reservation

assignSeat(row, position)

IBM Software Group

66

Attributes

! The structure of a class is represented by its attributes
! Attributes may be found by examining class definitions, the

problem requirements, business rules and by applying domain
knowledge

The name, address and
phone number for each
person is needed
before a reservation
can be made

Person
name
address
phoneNumber

IBM Software Group

67

Classes with Operations and Attributes

PassengerInterface

getName ()
getAddress ()

«interface»
IPerson

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

IBM Software Group

68

Relationships

! Relationships provide a pathway for communication between
objects

! Sequence and/or communication diagrams are examined to
determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk” there
must be a link between them

! Relationship types
!Association
!Aggregation
!Composition
!Dependency

IBM Software Group

69

Relationships

! An association is a bi-directional connection
between classes

! An aggregation is a stronger form of
association where the relationship is between
a whole and its parts

! A composition is a stronger form of
aggregation where the part is contained in at
most one whole and the whole is responsible
for the creation of its parts

! A dependency is a weaker form of
relationship showing a relationship between a
client and a supplier where the client does not
have semantic knowledge of the supplier

IBM Software Group

70

ReservationManager

Reservation

Finding Relationships

! Relationships are discovered by examining interaction
diagrams
!If two objects must “talk” there must be a pathway for

communication

:ReservationManager :Reservation

Assign seat row and position

IBM Software Group

71

Relationships

PassengerInterface

getName ()
getAddress ()

«interface»
IPerson

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

IBM Software Group

72

Multiplicity and Navigation

! Multiplicity defines how many objects participate in a
relationships
!Multiplicity is the number of instances of one class related to ONE

instance of the other class
!For each association and aggregation, there are two multiplicity

decisions to make: one for each end of the relationship

! Although associations and aggregations are bi-directional by
default, it is often desirable to restrict navigation to one
direction
!If navigation is restricted, an arrowhead is added to indicate the

direction of the navigation

IBM Software Group

73

Multiplicity

PassengerInterface

getName ()
getAddress ()

«interface»
IPerson

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

0..*

1

11

1

0..*

IBM Software Group

74

Navigation

PassengerInterface

getName ()
getAddress ()

«interface»
IPerson

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

0..*

1

11

1

0..*

IBM Software Group

75

Inheritance

! Inheritance is a relationships between a superclass and its
subclasses

! There are two ways to find inheritance:
!Generalization
!Specialization

! Common attributes, operations, and/or relationships are shown
at the highest applicable level in the hierarchy

IBM Software Group

76

Inheritance

PassengerInterface

getName ()
getAddress ()

«interface»
IPerson

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

0..*

1

11

1

0..*

IBM Software Group

77

Realization

! Realization is a relationship between a specification and its
implementation

IBM Software Group

78

Realization

PassengerInterface

getName ()
getAddress ()

«interface»
IPerson

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

0..*

1

11

1

0..*

IBM Software Group

79

UML 2 Interface Notation

PassengerInterface

getName ()
getAddress () IPerson

PassengerInterface is the implementation
IPerson interface

Mailer

IPerson

Mailer uses the
IPerson interface

PassengerInterface

getName ()
getAddress ()

Mailer

IPerson

IBM Software Group

80

Realization

PassengerInterface

getName ()
getAddress ()

Mailer

Reservation

addItem ()
assignSeat ()
deleteSeat ()

Seat

row
position

Passenger

name
address

CorporatePassenger

discount

Flight

airline
flightNumber

update()

ReservationManager

0..*

1

11

1

0..*

IPerson

IBM Software Group

81

UML 2.0 Changes

! Notation for a required interfaces () added

IBM Software Group

82

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

83

Composite Structure Diagrams

! Composite Structure diagrams show the internal structure of
a classifier and its interaction points to other parts of the
system
!Instance view of the world

! They show how the contained parts work together to supply the
behavior of the container

IBM Software Group

84

Aren’t Class Diagrams Sufficient?

! No!
!Because they abstract out certain specifics, class diagrams are

not suitable for performance analysis

! Need to model structure at the instance/role level

N1:NodeN1:Node N3:NodeN3:Node

N4:NodeN4:Node

N2:NodeN2:Node

N2:NodeN2:NodeN1:NodeN1:Node N3:NodeN3:Node

NodeNode

left 0..1

0..1
right

Same class diagram
describes both systems!

IBM Software Group

85

RedundantSystem

Collaborations
! In UML 2.0 a collaboration is a purely structural concept

!More general than an instance model

arbiter
:Arb

arbiterarbiter
:Arb:Arb

primaryprimaryprimary

clientclientclient backup1backup1backup1

backup2backup2backup2

collaborationcollaborationcollaboration

connector
(link role)

connectorconnector
(link role)(link role)

rolerolerole

1query 2b get

2a
get

2c get

associated associated
interactioninteraction
associated associated
interactioninteraction

IBM Software Group

86

Roles and Instances

! Specific object instances playing specific the roles in a
collaboration

a/arbiter
:Arb

a/a/arbiterarbiter
:Arb:Arb

d1/primary
:Dbase

d1/primary d1/primary
:Dbase:Dbase

c1/client
:Client

c1/clientc1/client
:Client:Client

d2/backup1
:Dbase

d2/backup1d2/backup1
:Dbase:Dbase

d2/backup2
:Dbase

d2/backup2d2/backup2
:Dbase:Dbase

IBM Software Group

87

Structured Class

! A complex class comprised of internal “parts”
! Desired structure is asserted rather than constructed

!Class constructor automatically creates desired structures
!Class destructor automatically cleans up

broker

service

client

Class Name

IBM Software Group

88

PortsPorts

Ports

! Interaction points

! Each port is dedicated to a specific purpose and presents the
interface appropriate to that purpose

IBM Software Group

89

Port Semantics
! A port can support multiple interface specifications

! Provided interfaces (what the object can do) - incoming
! Required interfaces (what the object needs to do its job) -

outgoing

«provides»

«uses»

<<interface>>
BuyTicket

Request()
Confirm()

<<interface>>
SellTicket

Proposal()
Confirm()

WebClientTicketServer

«uses»

«provides»

IBM Software Group

90

Ports: Alternative Notation

! Shorthand “lollipop” notation with 1.x backward compatibility

buyTicket

WebClient

sellTicket

Required Interface Required Interface

Provided Interface Provided Interface

IBM Software Group

91

A connector is constrained by a protocol
Static typing rules apply (compatible protocols)

Customer:
WebClient

Agency:
TicketServer

Assembling Communicating Objects

! Ports can be joined by connectors to model communication
channels
!At runtime, the WebClient is linked to the TicketServer

IBM Software Group

92

Protocols: Reusable Interaction Sequences

! Communication sequences that
!Conform to a pre-defined dynamic order
!Are defined generically in terms of role players
!E.g., ticket purchase protocol

propose

WebClient TicketServer

request
loop

confirm

confirm

IBM Software Group

93

Modeling Protocols with UML 2.0

! A collaboration structure with interactions

Ticket Purchase Protocol

«interface»
buyTicket

«interface»
buyTicket

request()
Confirm()
request()
Confirm()

agencyagencycustomercustomer

«interface»
sellTicket

«interface»
sellTicket

Propose()
Confirm()
Propose()
Confirm()

propose

WebClient TicketServer

requestloop

confirm
confirm

IBM Software Group

94

OnlineAgency

Structured Classes: Putting Them Together

Customer:
WebClient

Agency:
TicketServer

sd

ReserveFlights

sd

SelectFlights

IBM Software Group

95

Structured Classes: Putting Them Together

OnlineAgency

Customer:
WebClient

Agency:
TicketServer

sd
ReserveFlights

sd
SelectFlights

AirlineTicketReservation

sd sd

IBM Software Group

96

UML 2.0 Changes

! Composite structure diagrams, structured classes, ports and
connectors are new

IBM Software Group

97

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine

Diagrams

State
Machine

Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

98

State Machine Diagram

! A state machine diagram shows
!The life history of a given class
!The events that cause a transition from one state to another
!The actions that result from a state change

! State machine diagrams are created for objects with significant
dynamic behavior

IBM Software Group

99

State Diagram

Enter credit
card data

Do transaction:
Payment Transaction

Display
Confirmation Page

Display
Cancellation Page

OK aborted

done

cancel

state machine Make Payment

IBM Software Group

100

Submachine

User confirmation
For amount

Authorize
transaction

Enter PIN

Authorize
PIN

OK

PIN required

OK

Transaction
not authorized

PIN rejected

Transaction
confirmed

PIN confirmed

OK

aborted

Payment Transaction

IBM Software Group

101

Specialization
! Redefinition as part of standard class specialization

ATM

acceptCard()
outOfService()
amount()

Behaviour
Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour
Statemachine

<<Redefine>>

IBM Software Group

102

Example: State Machine Redefinition

! State machine of ATM to be redefined
VerifyCard

ReadAmount

selectAmount

acceptCard

ReleaseCardVerifyTransaction

selectAmount

amount

outOfService

releaseCard

OutOfService

ATM

{final}

{final}

{final}

{final}

IBM Software Group

103

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

outOfService

releaseCard

OutOfService

ATM

{final}

{final}

{final}

{final}

ReadAmount

selectAmount

amount

State Machine Redefinition

enterAmount
okreject

{extended}

otherAmount

{extended}
FlexibleATM

IBM Software Group

104

UML 2.0 Changes

! Protocol state machines added

IBM Software Group

105

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

106

Component Diagram

! A component is a modular unit with well defined interfaces
that is replaceable within its environment

! Components can be logical or physical

! Logical components
!Business components, process components etc.

! Physical components
!EJB components, .NET components, COM components etc.

IBM Software Group

107

Component Diagram

IPerson

<<component>> <<component>>

:Reservation :Passenger

<<component>>

:Ticket

IBM Software Group

108

UML 2.0 Changes

! Notation for a component changed

! Component may have ports

IBM Software Group

109

UML 2.0 Diagrams

Component
Diagrams

Component
Diagrams

Interaction
Diagrams

Interaction
Diagrams

State
Machine
Diagrams

State
Machine
Diagrams

Composite
Structure
Diagrams

Composite
Structure
Diagrams

Class
Diagrams
Class

Diagrams

Use
Case

Diagrams

Use
Case

Diagrams

Activity
Diagrams
Activity

Diagrams

Deployment
Diagrams

Deployment
Diagrams

IBM Software Group

110

Deployment Diagram

! Deployment diagrams show the execution architecture of
systems

! Nodes are connected by communication paths to create
network systems

IBM Software Group

111

Artifacts

! An artifact represents a physical entity

! Examples
!Model files, source files, scripts, binary executable files

<<artifact>>

<<component>>

:Ticket

Ticket.jar

<<manifest>>

IBM Software Group

112

Deployment Diagram

AppServer DB Server

<<artifact>>

Ticket.jar

<<deploy>>

IBM Software Group

113

UML 2.0 Changes

! Artifacts and deployment specifications are new

! New Node types introduced
!Execution environment (virtual machine, app server, and other

“middleware”)

IBM Software Group

114

Agenda

! The Importance of Modeling

! The Unified Modeling Language

! UML Diagrams

! Extending the UML

IBM Software Group

115

Extending the UML

! In order to model something effectively, the language that you
use to model it must be rich and expressive enough to do so

! “Out of the box” UML is sufficient for modeling object-oriented
software systems

! BUT… there are many more models that are useful in the
software development process

! UML can easily be extended to add more semantics to cover
other modeling situations
!Database models
!Business process
!Web pages
!On and on….

IBM Software Group

116

Extension Mechanisms

! Stereotypes

! Tag definitions and tagged values

! Constraints

IBM Software Group

117

Stereotypes

! A more refined semantic interpretation for a model element

<<metaclass>>

Class

<<stereotype>>

Table

IBM Software Group

118

Stereotype Examples

IBM Software Group

119

Deployment Diagram

IBM Software Group

120

Tag Definitions and Tagged Values

! A tag definition the ability to associate extra information with
a modeling element

!Defines the name and the type of information

! Example
!A database table could be modeled as a stereotyped class
!Columns could be modeled as stereotyped attributes
!Tag definition for a column could be “NullsAllowed”

! A tagged value is the actual instance of a tag definition with a
value that is associated to the modeling element

! Example
!Create a table Person
!Add a column, you MUST supply a value for “NullsAllowed” (true or

false)

IBM Software Group

121

Constraints

! A constraint is a rule that is applied to a modeling element
!Represented by curly braces in UML

! Used to evaluate if a modeling element is “well-formed”

! Example
!The name of a column cannot exceed the maximum length for

column names for the associated database

! The language of constraints is Object Constraint Language
(OCL)

IBM Software Group

122

OCL

! OCL is another OMG specification

! Defines an object-oriented language that is similar to
Smalltalk, Java and C++

! Formal way to express model ” well formedness” rules

{let x = self.model().OwnedProfile->any(Name='Data Modeler').
TaggedValueSet->any(Name='Preferences').TagDefinition-
>any(Name='maximumidentifierlength').DefaultValue.oclAsType(UML::Int
egerTaggedValue).Value in self.Name.size() <= x}

IBM Software Group

123

Profiles

! A profile is a collection of steretoypes, tag definitions and
constraints that work together to define new semantics for a
model

! Example
!Data modeling profile
!Business modeling profile
!EJB profile

IBM Software Group

124

EJB Profile

IBM Software Group

125

Specializing UML

! Lightweight extensions
!Extend semantics of existing UML concepts by specialization
!Conform to standard UML (tool compatibility)
!Profiles, stereotypes

! Heavyweight (MOF) extensions
!Add new non-conformant concepts or
!Incompatible change to existing UML semantics/concepts

Standard UML Semantics

LightweightLightweight
extensionextension

HeavyweightHeavyweight
extension Mextension M

IBM Software Group

126

The Profile-Based Approach to DSLs

! Profile = a compatible specialization of an existing modeling
language by
!Adding constraints, characteristics, new semantics to existing

language constructs
!Hiding unused language constructs

! Advantages:
!Supported by the same tools that support the base language
!Reuse of base language knowledge, experience, artifacts

! Example: ITU-T standard language SDL (Z.100)
!Modeling language used in telecom applications
!Now defined as a UML profile (Z.109)

IBM Software Group

127

UML Profile Example
! Defining a custom

«clock» stereotype

ClockClock

UML::Class UML::AttributeUML::Attribute

ClockValueClockValue

*

{type = Integer,
value >= 0}{has exactly

one ClockValue
Attribute}

Semantics:
changes value
synchronously with the
progress of physical time

UML base concepts
(metamodel)

Stereotypes

IBM Software Group

128

Profiles: Notation

! E.g., specializing the standard Component concept

«profile» «profile» TimingDevicesTimingDevices

«stereotype»«stereotype»
ClockClock

«metaclass»«metaclass»
ClassClass

«stereotype»«stereotype»
TimerTimer

«stereotype»«stereotype»
ToDclockToDclock

ExtensionExtension

IBM Software Group

129

Templates

! More precise model than UML 1.x

! Limited to Classifiers, Packages, and Operations

NumericArrayNumericArray

arrayElementarrayElement : T [k]: T [k]

T > Number, k : T > Number, k : IntegerExpressionIntegerExpression

TemplateTemplate
signaturesignature

IntegerArrayIntegerArray

arrayElementarrayElement : Integer [10]: Integer [10]

«bind» <T «bind» <T --> Integer, k > Integer, k --> 10>> 10>

TemplateTemplate
bindingbinding

“Bound”“Bound”
classclass

TemplateTemplate
parameterparameter

Class(ifierClass(ifier))
templatetemplate

IBM Software Group

130

Collaboration Templates
! Useful for capturing design patterns
ObserverPatternObserverPattern

subject : subject : sTypesType observer : observer : oTypeoType

oTypeoType, , sTypesType

ObserverPatternObserverPattern <<oTypeoType-->>DevicePollerDevicePoller, , sTypesType>Device>>Device>

DeviceObserverDeviceObserver
«bind»«bind»

CollaborationCollaboration
templatetemplate

IBM Software Group

131

Package Templates
! Based on simple string substitution

CustomerAccountTemplateCustomerAccountTemplateCustomerAccountTemplate

$<customer>$$<customer>$$<customer>$ $<kind>
Account$
$<kind>$<kind>

Account$Account$

customer : customer : StringExpressionStringExpression,,
kind : kind : StringExpressionStringExpression

$<kind>Acct$$<kind>Acct$
0..*0..*

ownerowner
1..*1..*

SavingsBankSavingsBankSavingsBank

PersonPersonPerson Personal
Account
PersonalPersonal
AccountAccount

PersonalAcctPersonalAcct
0..*0..*

ownerowner
1..*1..*

«bind» <customer«bind» <customer-->Person,>Person,
kind kind --> Personal> Personal

NameName
ExpressionExpression

IBM Software Group

132

Summary: UML 2.0 Highlights

! Greatly increased level of precision to better support MDD
!More precise definition of concepts and their relationships
!Extended and refined definition of semantics

! Improved language organization
!Modularized structure
!Simplified compliance model for easier interworking

! Improved support for modeling large-scale software systems
!Modeling of complex software structures (architectural description language)
!Modeling of complex end-to-end behavior
!Modeling of distributed, concurrent process flows (e.g., business processes,

complex signal processing flows)

! Improved support for defining domain-specific languages (DSLs)

! Consolidation and rationalization of existing concepts

IBM Software Group

133

Session Summary

! Now that you have completed this session, you should be able
to:
!Identify the different UML diagrams
!Describe the purpose of each diagram
!Use the different diagram and model elements

IBM Software Group

134

IBM Software Group

135

