1I'I|

| IBM Software Group

Introduction to UML 2.0

Terry Quatrani
UML Evangelist

ON DEMAND BUSINESS

© 2005 IBM Corporation

| IBM Software Group

Session Objectives

= After completing this session, you should be able to:
» Identify the different UML diagrams
» Describe the purpose of each diagram

» State where diagrams can be used

| IBM Software Group

Agenda

The Importance of Modeling

The Unified Modeling Language

Model-Driven Architecture

UML Diagrams
Extending the UML

| IBM Software Group

Agenda

The Importance of Modeling

The Unified Modeling Language

Model-Driven Architecture

UML Diagrams
Extending the UML

i

||Il

1]
liny |||
1||I
i)

| IBM Software Group

The Importance of Modeling

| IBM Software Group

Why do we model?

= To manage complexity

= To detect errors and omissions early in the lifecycle
= To communicate with stakeholders

= To understand requirements

= To drive implementation

= To understand the impact of change

= To ensure that resources are deployed
efficiently

| IBM Software Group

Agenda

The Importance of Modeling

The Unified Modeling Language

Model-Driven Architecture

UML Diagrams
Extending the UML

o - -
s 22 _
Im.m.“earu
= O C ©
8S®2*= 2
N >SS OS2
essnr_mm
E>S5E3 9
= . O C o
O O @
n O >
.Ifq’vmfs
S O O 0 >
ar_NJOd.l
2 S5%G50 g 2
O 29 TE O
=
2 n © © .=
|

\

o
=)
o
Q)
o
c
=
£
o
0p}
=
o

|

The Unified Modeling Language

IBM Software Group
-

-
i

Blobs with writing in their hair
And small adornments in the air
And has-relations everywhere
I've looked at clouds that way.

But now I've purged them from my Sun
Eliminated every one
So many things | would have done
To drive the clouds away.

I've looked at clouds from both sides now
Both in and out, and still somehow
It's clouds' delusions | appall
| really can't stand clouds at all...
Balls for multiplicity
Black and white for clarity
And data flows arranged in trees
Were part of OMT.

But now I've had to let them go
We'll do it differently, you know
‘Cause Grady said, they've got to go
We can't use OMT.

23 [
-:1

| IBM Software Group

Approach to Evolving UML 2.0

Evolutionary rather than revolutionary

Improved precision of the infrastructure

Small number of new features

New feature selection criteria
» Required for supporting large industrial-scale applications
» Non-intrusive on UML 1.x users (and tool builders)

Backward compatibility with 1.x

| IBM Software Group

Formal RFP Requirements

7

Infrastructure — UML internals)
» More precise conceptual base for better MDA support
» MOF-UML alignment

Superstructure — User-level features
» New capabilities for large-scale software systems

\ » Consolidation of existing features p

OCL - Constraint language
» Full conceptual alignment with UML

Diagram interchange standard
» For exchanging graphic information (model diagrams)

| IBM Software Group

Infrastructure Requirements

= Precise MOF alignment
» Fully shared “common core” metamodel
* Refine the semantic foundations of UML (the UML metamodel)

» Improve precision
» Harmonize conceptual foundations and eliminate semantic overlaps

» Provide clearer and more complete definition of instance semantics
(static and dynamic)

| IBM Software Group

OCL Requirements

= Define an OCL metamodel and align it with the UML
metamodel

» OCL navigates through class and object diagrams = must share a
common definition of Class, Association, Multiplicity, etc.

= New modeling features available to general UML users
» Beyond constraints

» General-purpose query language

| IBM Software Group

Diagram Interchange Requirements

= Ability to exchange graphical information between tools

» Currently only non-graphical information is preserved during model
interchange

» Diagrams and contents (size and relative position of diagram
elements, etc.)

| IBM Software Group

Superstructure Requirements (1 of 2)

More direct support for architectural modeling

» Based on existing architectural description languages
(UML-RT, ACME, SDL, etc.)

» Reusable interaction specifications (UML-RT protocols)

Behavior harmonization
» Generalized notion of behavior and causality
» Support choice of formalisms for specifying behavior

Hierarchical interactions modeling

Better support for component-based development

More sophisticated activity graph modeling
» To better support business process modeling

| IBM Software Group

Superstructure Requirements (2 of 2)

New statechart capabilities
» Better modularity

Clarification of semantics for key relationship types
» Association, generalization, realization, etc.

Remove unused and ill-defined modeling concepts

Clearer mapping of notation to metamodel

Backward compatibility
» Support 1.x style of usage

» New features only if required

i

||Il

1]
liny |||
1I|I
i)

| IBM Software Group

Language Architecture

Multiple levels of

- « . compliance
= A core language + a set of optional “language units P

» Some language units have multiple “levels”

5'””9 Structured = BACHVIGESY |Interactions | petaileg IIOWS

Machines = Classes and P,
SR Actions
Compoenents

—_— = - LEvel 2

C Ul\/H

| IBM Software Group

The UML 2.0 Specification

= Can be downloaded from
http://www.omg.org/cgi-bin/doc?ptc/2004-10-02

E
i

S®-w o - M BHEE

Hoakmak +

| Uinifisd Madaking La =
] Tahle of Canbants
ﬂ 1 BEcope
2 Canformance
) 3 Mainelne refene
)4 Tarwes and defisit
15 Symbos
B 6 Additanal infoes
I Part |- Sucturs
B)7 Clesens
B 18 Componenis

&

i) O Camposita Seeect
=] 10 Depliymenis
=L T Part |l - Behaviar
#1111 Action=
= Y12 Actialias
U113 Comman Bebavis
B] 14 Intarsclins
15 Siaba Machines

;_815 Isa Casas

[Part 10 - Supalemen
B 117 Bundiary Comsan
#{] 1E Profles

[Part 1 - Bppendacs

L] &~ppendix & Diagra
=] Appendix B. Seands

Harm*e 08 B-= e~ -8 DOED ®- W

UML 2.0 Superstructure Specification

This ONIG decmmient replaces the sebmission docoment (2 3520800 F and the Dt Adopled
specalication {pac LT 06 1w an OMOG Fial Adopled Speafication asd o currently an the
finalization phase, Comments on e conkenl of thes documsent are weloomeed, and shosld e
direcied o fasesioosre. org by Sepiember B, 20603,

You may view e pernding issues o this specificaison from the O8&G revision issaes welb page
AT Cues o g IS e lowever, al e e of 1his wrilcg dhere were no peiading ssues

The FTF Recoammendatsod and Bepornt for this speciication will b2 published on Agpesl 30, 2004 17
o e reskding this afer thal date, plesse downlosd the avnlable specifcation From ghe ORI G
Specificalions Cataleg

ToiGE] kBl AZRETIE O = @ 4| r

| IBM Software Group

Agenda

The Importance of Modeling

The Unified Modeling Language

Model-Driven Architecture

UML Diagrams
Extending the UML

| IBM Software Group

Model-Driven Architecture (MDA)

= An OMG initiative to support model-driven development
through a series of open standards

(1) ABSTRACTION (2) AUTOMATION
|

(3) OPEN STANDARDS
 Modeling lanqguages

* Interchange facilities
e Model transformations
o Software processes

e etc.

| IBM Software Group

Set of modeling languages for specific purposes

The Languages of MDA

UML
“bootstrap”

General-purpose
modeling language

Common
Warenouse
Vietamoeadel (CWIM)
For exchanging
information about
business and data

A modeling language
for defining modeling
languages

Real-Time
profile

EAI profile

Software

i

process profile

| IBM Software Group

MOF (Metamodel) Example

Uses (mostly) class diagram concepts to define

Element
0.1 /owner
@
*
/lownedE lement
Relationship Element Comment
*

1.*
DirectedRelationship /source
1.*
ltarget
1.*

| IBM Software Group

Agenda

The Importance of Modeling

The Unified Modeling Language

Model-Driven Architecture

UML Diagrams
Extending the UML

| IBM Software Group

Meta-models and Notations

1
[T}
1“
|4

| IBM Software Group

Metamodel Description of Objects

Element
(fromOwnerships)

NamedElement
(fromNarrespaces)

InstanceSpecification

ValueSpecification
(fromExpres sions)
StructuralFeature
(fromStructuralFeatures)

A

Classifier
(fromClassifiers)

ValueSpecification
(fromExpressions)

>I

Object Identifier

InstanceValue

| IBM Software Group

Metamodel Structure

]
Classes
A
Different Behavior —
Formalisms # CommonBehaviors—
7 41 ki S
Activities # Interactions H# stateMachines # UseCases

A

i
H# Actions

| IBM Software Group

Diagram Elements

= Each diagram has a frame, a content area
and a heading

= The frame is a rectangle and is used to
denote a border

» Frame is optional

= The heading is a string contained in a
name tag which is a rectangle with cut off
corners in the upper left hand corner of the
frame

» Format [<kind>] [xname>] [<parameters>]

» <kind> can be activity, class, component,
interaction, package, state machine, use
case

<kind> <name> <parameters>

| IBM Software Group

Frame Example

Package P

Class 1

Class 2

‘ IBM Software Group

UML 2.0 Diagrams

o O
MODELING
LARGUAGE

| IBM Software Group

UML 2.0 Diagrams

Use

Case
Diagrams

Activity
Diagrams

MODELING
LANGUAGE

Deployment
Diagrams

Component
Diagrams

UNIFIED o

L

Interaction
Diagrams

Class
Diagrams

Composite
Structure
Diagrams

State
Machine

Diagrams

| IBM Software Group

Activities

= Significantly enriched in UML 2.0 (relative to UML 1.x activities)

» More flexible semantics for greater modeling power (e.g., rich
concurrency model based on Petri Nets)

» Many new features

= Major influences for UML 2.0 activity semantics

» Business Process Execution Language for Web Services
(BPEL4AWS) — a de facto standard supported by key industry
players (Microsoft, IBM, etc.)

» Functional modeling from the systems engineering community
(INCOSE)

| IBM Software Group

Activity Diagram

= Activity diagrams show flow of control and data flow

= Typically used to model
» Business process workflow
» Flow within a use case
» Business rules logic
» Functional processes
» Ul screen flows

o>

>__}>o

\ 4[condition 1]

[condition 3]

T

it

iy
Ml
1I|I
Tl

‘ IBM Software Group

Activity Diagram

List of
Alternatives

Partitioning capabilities

| IBM Software Group

Compan

Invoice

Make
payment

Seattle Reno
=
(O]
£
®
:
D a
- Receive Close
: ©
O
(@)
=
=
>
= Send Accept
< invoice payment

| IBM Software Group

Partitioning capabilities

Seattle

=
(O]
£
®
of
[<B)
Q Receive
(O]
2| 2 order
al | O
£
(@]
O (@)
=
c
>
S Send Accept
< invoice payment

Invoice

Make
payment

| IBM Software Group

Activities: Basic Notational Elements
—_— Control/Data Flow

:: %.:; Control Fork

- Activity or Action ii

Control Join

- Object Node |
(may include state) :i ® Initial Node

-. Pin (Object) ;i
ii o Activity Final

% Choice 3

i O Flow Final

(Simple) Join !

| IBM Software Group

Extended Concurrency Model

= Fully independent concurrent streams (“tokens”)

Concurrency join
Concurrency fork

Valid output streams:

ABCXYZ
“Tokens” represent AXYBCZ
ireads (xecutions of ABXCYZ
activities) AXBYCZ
ABXYCZ
NB: Not part of the AXBCYZ

notation

| IBM Software Group

Activities: Token Queuing Capabilities

= Tokens can
» queue up in “infout” pins
» backup in network
» prevent upstream behaviors from taking new inputs

o0 (o> h (J
Activity 2 > Activity 3

= ...or, they can flow through continuously
» taken as input while behavior is executing
» given as output while behavior is executing
» identified by a {stream} adornment on a pin or object node

| IBM Software Group

Actions in UML

= Action = fundamental unit of behavior
» for modeling fine-grained behavior
» Level of traditional programming languages

= UML defines:
» A set of action types
» A semantics for those actions
= |.e. what happens when the actions are executed
= Pre- and post-condition specifications (using OCL)
» No concrete syntax for individual kinds of actions (notation)
= Flexibility: can be realized using different concrete languages

= In UML 2, the metamodel of actions was consolidated
» Shared semantics between actions and activities (Basic Actions)

| IBM Software Group

Object Behavior Basics

= Support for multiple computational OutputPin
- B oo

paradigms

Input Pin
(typed)

ActivityNode
(context)

Action2

Actionl - o

. // |

\ValialeA II\ T

Data Flow

| IBM Software Group

Categories of Actions

Communication actions (send, call, receive,...)

Primitive function action

Object actions (create, destroy, reclassify,start,...)

Structural feature actions (read, write, clear,...)

Link actions (create, destroy, read, write,...)

Variable actions (read, write, clear,...)

Exception action (raise)

| IBM Software Group

UML 2.0 Diagrams

Use Case
Diagrams

Activity
Diagrams

MODELING
LANGUAGE

Deployment
Diagrams

Component
Diagrams

UNIFIED o

Interaction
Diagrams

Class
Diagrams

L

Composite
Structure
Diagrams

State
Machine

Diagrams

| IBM Software Group

Use Case Diagram

= Use case diagrams are created to visualize the relationships
between actors and use cases

= Use cases are a visualization the functional requirements of a
system

| IBM Software Group

Actors

= An actor is someone or some thing that must interact with the
system under development

Passenger Bank

| IBM Software Group

Use Cases

= A use case is a pattern of behavior the system exhibits

» Each use case is a sequence of related transactions performed by
an actor and the system in a dialogue

= Actors are examined to determine their needs
» Passenger — Search for Flights, Make Reservation, Pay for Flight

» Bank -- receive payment information from Pay for Flight

- - -

Search for Flights Make Reservation Pay for Flight

| IBM Software Group

Documenting Use Cases

= A use case specification document is created for each use
cases

» Written from an actor point of view

= Detalls what the system must provide to the actor when the use
cases is executed
= Typical contents
» How the use case starts and ends
» Normal flow of events
» Alternate flow of events

» Exceptional flow of events

| IBM Software Group

Use Case Diagram

Q

Flight Reservation System

Search for flights

(

I «include»

]

Make reservation

Extension points

Passenger

Seat Selection Select seat

«extend» ™

Pay for Flight

>0

Bank

| IBM Software Group

UML 2.0 Changes

= No notational changes for use case diagrams in UML 2.0

| IBM Software Group

UML 2.0 Diagrams

Use
Case
Diagrams

Activity
Diagrams

UNIFIED o
IMODELING
LANGUAGE

Deployment
Diagrams

Component
Diagrams

Interaction
Diagrams

State
Machine

Diagrams

Class
Diagrams

Composite
Structure
Diagrams

| IBM Software Group

Interaction Diagrams

= Interaction diagrams show the communication behavior
between parts of the system
= Four types of diagrams
» Sequence diagram
= Emphasis on the sequence of communications between parts
» Communication diagram

= Emphasis on structure and the communication paths between
parts

» Timing diagram
= Emphasis on change in state over time
» Interaction overview diagram
= Emphasis on flow of control between interactions

| IBM Software Group

Sequence Diagram

X

reservation reservation destination
: Customer - - -
— system manager

Make reservation

Enter PIN

verify PIN(numbegI

valid

kAsk for destinatiorl

Destination

>| Destination

l Show flights gdgétination)

| IBM Software Group

Framed Sequence Diagram

SD Make Reservation)

. reservatio reservatio
~Customer system | manaﬁer |

Make reservg ion
__Enter PIN]

valid

Iésk for destirlation

I EI Destinatio I

Iverifv PIN(ngﬂmer)

destinatian

u>|.SI:.mAgU.Lg.n§|(destination)

| IBM Software Group

Composite Diagrams

SD Make Reservation)

% 4 sp check PN

. reservation reservation destination L

LM@KQ@&LJ&UOH I .: . Customer reservatioI: reservation
. . . .' system manager
L 4
: Enter PIN I
lEEI?-LELNCk)eﬁk'FIElfN(n ym ber)

1

valid . verify PIN(numb

1 h . i) ., I
Ié;\g_&uﬁ_ﬁm tion I ., —

: |<_ - -
| EI Destinati ., |
I | I&muﬂl.gﬁs (destinatignyd]

C— ——

)

—_—l v

| IBM Software Group

Combined Fragment Types

Alternatives (alt)
» choice of behaviors — at most one will execute
» depends on the value of the guard (“else” guard supported)

Option (opt)
» Special case of alternative

Loop (loop)
» Optional guard: [<min>, <max>, <Boolean-expression>]

» No guard means no specified limit

Break (break)

» Represents an alternative that is executed instead of the remainder
of the fragment (like a break in a loop)

| IBM Software Group

Combined Fragment Types

Parallel (par)
» Concurrent (interleaved) sub-scenarios

Negative (neg)
» Identifies sequences that must not occur

Assertion (assert)
» This must happen

Critical Region (region)

» Traces cannot be interleaved with events on any of the participating
lifelines

| IBM Software Group

Combined Fragments Diagram

SD Make Reservation)

client; atm: dbase:
i insertCard >: i
ref CheckPin

DoTransaction

| IBM Software Group

Communication Diagram Example

sd Reserve

Flighy

Client

Server

/\0
rec®
1 P
1.2 confirm
flights

il.l approve
flights

:Flight DB

| IBM Software Group

Timing Diagram Example

sd Reader

| IBM Software Group

sg) OverviewDiagram lifelines Client, :Server

Interaction Overview Example

= Like flow charts Authorization

» Use activity graph notation for

control constructs
sd

= Better overview of complex .
. g | :Client | | :Server |
Interactions

» Alternatives, options etc.

= Multiple diagram types could
be included/referenced

request >:
|

ref DoMore

O

| IBM Software Group

UML 2.0 Changes

= Interaction occurrences and combined fragments added

= Communication diagrams created to replace collaboration
diagrams used to show interactions

= New diagrams: Timing Diagram and Interaction Overview
Diagram

| IBM Software Group

UML 2.0 Diagrams

Use Interaction
Case Diagrams

Diagrams

Activity Class

Diagrams / Diagrams
UNIFIED o

MODELING

LANGUAGE

Component State
Diagrams Machine

Composite
Structure
Diagrams

Deployment
Diagrams

Diagrams

| IBM Software Group

Class Diagram

= Class diagrams show static structure
» This is the diagram that is used to generate code

e S

=
=z
f

=

| IBM Software Group

Classes

A class defines a set of objects with common structure,
common behavior, common relationships and common
semantics

Classes can be “discovered” by examining the objects in
sequence and collaboration diagram

A class is drawn as a rectangle with three compartments

Classes should be named using the vocabulary of the domain
» Naming standards should be created
» e.g., all classes are singular nouns starting with a capital letter

| IBM Software Group

Classes

Mailer

«interface»
IPerson

ReservationManager

Passengerlinterface

Passenger

Reservation

Seat

CorporatePassenger

Flight

| IBM Software Group

Operations

= The behavior of a class is represented by its operations

= Operations may be found by examining interaction diagrams

:ReservationManager

:Reservation

A{ssign seat row and positi;l:n

Reservation

assignSeat(row, position)

| IBM Software Group

Attributes

= The structure of a class is represented by its attributes

= Attributes may be found by examining class definitions, the

problem requirements, business rules and by applying domain

knowledge

The name, address and
phone number for each
person is needed
before a reservation
can be made

.

Person

name
address
phoneNumber

| IBM Software Group

Classes with Operations and Attributes

ReservationManager
«interface»
IPerson
Mailer getName () Passengerinterface
getAddress ()
getName ()
getAddress ()
Reservation
additem ()
assignSeat ()
Passenger deleteSeat ()
name
address
Seat Flight
CorporatePassenger row airline
- position flightNumber
discount
update()

| IBM Software Group

Relationships

= Relationships provide a pathway for communication between
objects

= Sequence and/or communication diagrams are examined to
determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk” there
must be a link between them

= Relationship types
» Association
» Aggregation
» Composition
» Dependency

| IBM Software Group

Relationships

= An association is a bi-directional connection
between classes

= An aggregation is a stronger form of
association where the relationship is between <>
a whole and its parts

= A composition is a stronger form of
aggregation where the part is contained in at <@
most one whole and the whole is responsible
for the creation of its parts

= A dependency is a weaker form of
relationship showing a relationship between a
client and a supplier where the client does not
have semantic knowledge of the supplier

| IBM Software Group

Finding Relationships

= Relationships are discovered by examining interaction

diagrams

» If two objects must “talk” there must be a pathway for
communication

:ReservationManager

:Reservation

ssign seat row and positiof

.

———Y.

ReservationManager

Reservation

| IBM Software Group

Relationships

ReservationManager
=7 «interface»
e IPerson
Mailer |-~ getName () Passengerinterface
getAddress ()
getName ()
_- getAddress ()
-7 g Reservation
Pl addltem ()
assignSeat ()
Passenger deleteSeat ()

name
address

Seat Flight
CorporatePassenger row airline
- position flightNumber
discount
update()

| IBM Software Group

Multiplicity and Navigation

= Multiplicity defines how many objects participate in a
relationships

» Multiplicity is the number of instances of one class related to ONE
instance of the other class

» For each association and aggregation, there are two multiplicity
decisions to make: one for each end of the relationship

= Although associations and aggregations are bi-directional by
default, it is often desirable to restrict navigation to one
direction

» If navigation is restricted, an arrowhead is added to indicate the
direction of the navigation

| IBM Software Group

Multiplicity

=7 «interface»
P IPerson

Mailer

g getName ()

getAddress ()

Adl
Passenger

name 1
address

ReservationManager
1
Passengerlinterface
getName ()
getAddress ()
0..*
Reservation

0..*| additem ()
assignSeat ()
deleteSeat ()

/

CorporatePassenger

discount

1
Seat Flight
row airline
position flightNumber
update()

| IBM Software Group

Navigation

=7 «interface»
P IPerson

Mailer

g getName ()

getAddress ()

Adl
Passenger

name 1
address

ReservationManager
1
Passengerlinterface
getName ()
getAddress ()
0..*
Reservation

0..*| additem ()
assignSeat ()
deleteSeat ()

/.

CorporatePassenger

discount

1
Seat Flight
row airline
position flightNumber
update()

| IBM Software Group

Inheritance

= Inheritance is a relationships between a superclass and its
subclasses

= There are two ways to find inheritance:
» Generalization
» Specialization

= Common attributes, operations, and/or relationships are shown
at the highest applicable level in the hierarchy

| IBM Software Group

Inheritance

=7 «interface»
P IPerson

Mailer

g getName ()

getAddress ()

Adl
Passenger

name 1
address

7

ReservationManager
1
Passengerlinterface
getName ()
getAddress ()
0..*
Reservation

0..*| additem ()
assignSeat ()
deleteSeat ()

/.

CorporatePassenger

discount

1
Seat Flight
row airline
position flightNumber
update()

| IBM Software Group

Realization

= Realization is a relationship between a specification and its
Implementation

| IBM Software Group

Realization

«interface»
IPerson

Mailer

getName ()
getAddress ()

Al

Passenger

name 1
address

7

CorporatePassenger

discount

ReservationManager
1
Passengerlinterface
getName ()
getAddress ()
0..*
Reservation

0..*| additem ()
assignSeat ()
deleteSeat ()

/.

1
Seat Flight
row airline
position flightNumber
update()

| IBM Software Group

UML 2 Interface Notation

Passengerlnterface

getName () O
getAddress () IPerson

Passengerinterface is the implementation
IPerson interface

Mailer C

IPerson

Mailer uses the
IPerson interface

Passengerlinterface

Mailer ©_

IPerson

getName ()
getAddress ()

| IBM Software Group

Realization
ReservationManager
1
Mailer @ Passengerlnterface
getName ()
IPerson _- getAddress ()
i 0..*
-7 - Reservation
g 0..*| additem ()
assignSeat ()
Passenger deleteSeat ()
name 1
address
. 1 1
fl Seat Flight
CorporatePassenger row airline
. position flightNumber
discount
update()

| IBM Software Group

UML 2.0 Changes

= Notation for a required interfaces (—C) added

| IBM Software Group

UML 2.0 Diagrams

Use Interaction
Case Diagrams
Diagrams

Class

Activity
Diagrams

Diagrams

UNIFIED o
IMODELING
LANGUAGE

Component State
Diagrams Machine
Diagrams

\ Composite

Structure
Diagrams

Deployment
Diagrams

| IBM Software Group

Composite Structure Diagrams

= Composite Structure diagrams show the internal structure of
a classifier and its interaction points to other parts of the
system

» Instance view of the world

= They show how the contained parts work together to supply the
behavior of the container

| IBM Software Group

Aren’t Class Diagrams Sufficient?

= No!

» Because they abstract out certain specifics, class diagrams are
not suitable for performance analysis

= Need to model structure at the instance/role level

N1:Node

Same class diagram
MI—M |—M| describes both systems!

| IBM Software Group

Collaborations

= In UML 2.0 a collaboration is a purely structural concept collaborationJ
» More general than an instance model _ _ _ _ _]
_-" RedundantSystem T~ ~
= ~ N
. N
associated - S
interaction < pHIMAEY » \
\
lquery \l
I
/
/
connector //
(link role)

N

| IBM Software Group

Roles and Instances

= Specific object instances playing specific the roles in a
collaboration

odiprimary:
:DvESE

cd/client 2l IdIer dZ/hackupil

SAND Dlase

CliEnt

0Z/Packip2
;DIhESE

| IBM Software Group

Structured Class

= A complex class comprised of internal “parts”

= Desired structure is asserted rather than constructed
» Class constructor automatically creates desired structures
» Class destructor automatically cleans up

client

| IBM Software Group

Ports

= Interaction points

= Each port is dedicated to a specific purpose and presents the
Interface appropriate to that purpose

| IBM Software Group

Port Semantics

= A port can support multiple interface specifications
» Provided interfaces (what the object can do) - incoming

» Required interfaces (what the object needs to do its job) -
outgoing

«USes» «provides»

«uUSes»
> CLILTITTTEE

| IBM Software Group

Ports: Alternative Notation

= Shorthand “lollipop” notation with 1.x backward compatibility

Provided Interface
buyTicket

sellTicket

Required Interface

| IBM Software Group

Assembling Communicating Objects

= Ports can be joined by connectors to model communication
channels

» At runtime, the WebClient is linked to the TicketServer

A connector is constrained by a protocol
Static typing rules apply (compatible protocols)

| IBM Software Group

Protocols: Reusable Interaction Sequences

= Communication sequences that
» Conform to a pre-defined dynamic order

» Are defined generically in terms of role players

» E.Q., ticket purchase protocol

WebClient

TicketServer

loop

request

>
propose
confirm
>
confirm

e —— - .

| IBM Software Group

Modeling Protocols with UML 2.0

= A collaboration structure with interactions

Ticket Purchase Protocol

| IBM Software Group

Structured Classes: Putting Them Together

| IBM Software Group

Structured Classes: Putting Them Together

| IBM Software Group

UML 2.0 Changes

= Composite structure diagrams, structured classes, ports and
connectors are new

| IBM Software Group

UML 2.0 Diagrams

Use Interaction
Case Diagrams
Diagrams

Activity Class
Diagrams Diagrams

UNIFIED o
IMODELING
LANGUAGE

Component State
Diagrams Machine
Diagrams

Composite
Structure
Diagrams

Deployment
Diagrams

| IBM Software Group

State Machine Diagram

= A state machine diagram shows
» The life history of a given class
» The events that cause a transition from one state to another
» The actions that result from a state change

= State machine diagrams are created for objects with significant
dynamic behavior

>

| IBM Software Group

State Diagram

state machine Make Payment)

cancel

Enter credit]OK
card data J

Display
Confirmation Page

Do transaction: aborted
Payment Transaction

done

Display
Cancellation Page

| IBM Software Group

Submachine

Payment Transaction

<>‘L>[

User confirmation‘| OK Authorize
For amount | transaction

Enter PIN

Authorize

PIN confirmed

PIN required

Transaction

not authorized

PIN rejected

abortedi

| IBM Software Group

Specialization

= Redefinition as part of standard class specialization

rejectTransaction()

ATM Behaviour
acceptCard()
outOfService()
amount()
FlexibleATM Behaviour
otherAmount()

-

Statemachine

%

<<Redefine>>

Statemachine

b

| IBM Software Group

Example: State Machine Redefinition

i

||Il

1]
liny |||
1||I
i)

| IBM Software Group

State Machine Redefinition

VerifyCard

{final}
| acceptCard
Vv

ReadAmount

S

OutOfService CUtOfService selectAmount

: <
i o

|
v releaseCard

VerifyTransaction - ReleaseCard
{final} '

| IBM Software Group

UML 2.0 Changes

= Protocol state machines added

| IBM Software Group

UML 2.0 Diagrams

Use Interaction
Case Diagrams
Diagrams

Activity Class
Diagrams Diagrams

UNIFIED o
IMODELING
LANGUAGE

Component State
Diagrams Machine
Diagrams

Composite
Structure
Diagrams

Deployment
Diagrams

| IBM Software Group

Component Diagram

Logical components

» Business components, process components etc.

Physical components

» EJB components, .NET components, COM components etc.

“l—o

A component is a modular unit with well defined interfaces
that is replaceable within its environment

Components can be logical or physical

£]

| IBM Software Group

Component Diagram

<<component>> E

‘Ticket

<<component>> E <<component>> E

—O

:Reservation :Passenger
IPerson

| IBM Software Group

UML 2.0 Changes

= Notation for a component changed

= Component may have ports

| IBM Software Group

UML 2.0 Diagrams

Use Interaction
Case Diagrams
Diagrams

Activity Class
Diagrams Diagrams

UNIFIED o
IMODELING
LANGUAGE

Component State
Diagrams Machine
Diagrams

Composite
Structure
Diagrams

Deployment
Diagrams

| IBM Software Group

Deployment Diagram

= Deployment diagrams show the execution architecture of
systems

= Nodes are connected by communication paths to create
network systems

17

1

| IBM Software Group

Artifacts

= An artifact represents a physical entity

= Examples
» Model files, source files, scripts, binary executable files

<<artifact>> D

Ticket.jar

|
I .
I <<manifest>>

|
"4

<<component>> E

‘Ticket

| IBM

Software Group

Deployment Diagram

4

AppServer

L

7
I <<deploy>>
|

<<artifact>> []

Ticket.jar

DB Server

| IBM Software Group

UML 2.0 Changes

= Artifacts and deployment specifications are new

= New Node types introduced

» Execution environment (virtual machine, app server, and other
“middleware”)

| IBM Software Group

Agenda

The Importance of Modeling

The Unified Modeling Language

UML Diagrams
Extending the UML

| IBM Software Group

Extending the UML

In order to model something effectively, the language that you
use to model it must be rich and expressive enough to do so

“Out of the box” UML is sufficient for modeling object-oriented
software systems

BUT... there are many more models that are useful in the
software development process

UML can easily be extended to add more semantics to cover
other modeling situations

» Database models

» Business process

» Web pages

» On and on....

| IBM Software Group

Extension Mechanisms

= Stereotypes
= Tag definitions and tagged values

= Constraints

| IBM Software Group

Stereotypes

= A more refined semantic interpretation for a model element

<<metaclass>>

Class

A

<<stereotype>>

Table

| IBM Software Group

{3 Company

S e

8 Microsoft

Stereotype Examples

(5 App1

W

A

<<der:u|u:n_.rr5’|er‘|t>>

cartifacts
(1 App2
A

wdeployments

Il

R AT

: 18

LinuxBox

;o"—nt"; &"aﬁ” E L

& LinuxBox

i Appl

:ﬁ Appd

ErET,
[app3

)

<cdepluyr'r|er‘|t>>

LinuxBox

| IBM Software Group

Deployment Diagram

client

- client

=TT 1

- sarver Server

internet

1

1 -iserver

intranet

1- database

database

| IBM Software Group

Tag Definitions and Tagged Values

A tag definition the ability to associate extra information with
a modeling element

» Defines the name and the type of information

= Example
» A database table could be modeled as a stereotyped class
» Columns could be modeled as stereotyped attributes
» Tag definition for a column could be “NullsAllowed”

= Atagged value is the actual instance of a tag definition with a
value that is associated to the modeling element

= Example
» Create a table Person

» Add a column, you MUST supply a value for “NullsAllowed” (true or
false)

| IBM Software Group

Constraints

A constraint is a rule that is applied to a modeling element
» Represented by curly braces in UML

Used to evaluate if a modeling element is “well-formed”

Example

» The name of a column cannot exceed the maximum length for
column names for the associated database

The language of constraints is Object Constraint Language
(OCL)

| IBM Software Group

OCL

= QOCL is another OMG specification

= Defines an object-oriented language that is similar to
Smalltalk, Java and C++

= Formal way to express model ” well formedness” rules

{let x = self.model().OwnedProfile->any(Name='Data Modeler").

TaggedValueSet->any(Name='Preferences'). TagDefinition-
>any(Name="maximumidentifierlength').DefaultValue.oclAsType(UML.::Int
egerTaggedValue).Value in self.Name.size() <= x}

Profiles

| IBM Software Group

A profile is a collection of steretoypes, tag definitions and

constraints that work together to define new semantics for a
model

Example
» Data modeling profile

» Business modeling profile
» EJB profile

| IBM Software Group

EJB Profile

sprofiles EJB
{requirsdf sterectypes . astersotypey
Component pl——— Bean Artifact i
!
asterectypes
J asterentypes asterentypes smetaciasss b<
i Entity Session Interface
state Salernd sereot
A ml cEnUmEration:s 1A Bean must
wﬁﬂ:id or StateKind reslize exactly
specidlizer. } stateless one Home
sttt interface.}

| IBM Software Group

Specializing UML

= Lightweight extensions
» Extend semantics of existing UML concepts by specialization
» Conform to standard UML (tool compatibility)
» Profiles, stereotypes

= Heavyweight (MOF) extensions

» Add new non-conformant concepts or
» Incompatible change to existing UML semantics/concepts

Standard UML Semantics
Heavyweight [Sighitwengit
extension M Extension

| IBM Software Group

The Profile-Based Approach to DSLs

= Profile = a compatible specialization of an existing modeling
language by

» Adding constraints, characteristics, new semantics to existing
language constructs

» Hiding unused language constructs

= Advantages:
» Supported by the same tools that support the base language
» Reuse of base language knowledge, experience, artifacts

= Example: ITU-T standard language SDL (Z.100)

» Modeling language used in telecom applications
» Now defined as a UML profile (Z.109)

| IBM Software Group

UML Profile Example

UML base concepts
n Deﬁning a custom / (metamodel) \
«clock» stereotype

UML::Class * UML::Attribute
T / Stereotypes \T
Clock ClockValue

Semantics: {type = Integer,
changes value {has exactly value >= 0}

synchronously with the one ClockValue
progress of physical time Attribute}

| IBM Software Group

Profiles: Notation

= E.g., specializing the standard Component concept

«profile» TimingDevices

MEIECIaSS»
(Class

ETerS1or)

KSIEEOLPEY
ClocK

KSIEEOLYIEY KSIETEOLPEY

JmEen

ePclock

| IBM Software Group

Templates

= More precise model than UML 1.x

= Limited to Classifiers, Packages, and Operations

Template
slgnaiure

Templeie > NImEr K e GEEXPIESSION
Oelrafregier e

Temglate
oincling

155(ifier)
frolaie

“<bind» <T -> Integer, k -> 10>

INEYEATIEY,
arrayElement:nteger1o]

Pt "1
-

| IBM Software Group

Collaboration Templates

= Useful for capturing design patterns
ObserverPattern

OINOERSIIVIOE

subject : sType observer : oType

f2rolie

«bind»

[Collabora.ﬂon A

DeviceObserver

ObserverPattern <oType->DevicePoller, sType>Device>

| IBM Software Group

Package Templates

= Based on simple string substitution

CustomerAccountiiemplate

CUSIOMER SINGEXPIESSION;
= KNGS SO EXPIEsSIoN

S<CUSIOMESS Accolnts

Narre
EX0ressiof

«bind» <customer->Person, :
kind -> Personal

SavingsBank

Persenal
PEISoNn

AcCCOUNt

| IBM Software Group

Summary: UML 2.0 Highlights

Greatly increased level of precision to better support MDD
» More precise definition of concepts and their relationships
» Extended and refined definition of semantics

Improved language organization
» Modularized structure
» Simplified compliance model for easier interworking

Improved support for modeling large-scale software systems
» Modeling of complex software structures (architectural description language)
» Modeling of complex end-to-end behavior

» Modeling of distributed, concurrent process flows (e.g., business processes,
complex signal processing flows)

Improved support for defining domain-specific languages (DSLS)

Consolidation and rationalization of existing concepts

| IBM Software Group

Session Summary

= Now that you have completed this session, you should be able
to:

» Identify the different UML diagrams
» Describe the purpose of each diagram

» Use the different diagram and model elements

IBM Software Group

Q
>
=
o
=
a
=
£
o
0p)
p=
o

