Measurements

Name:	Grade:				
Student's No.:	Day and Date:				
Partner's Names:	Sec.:				

Part I: Data and Calculation:

No. of trails	Circumference c(cm)	Diameter d(cm)	$\pi = c / d$	$\begin{array}{c} \textbf{Deviation} \\ d_i = \pi_i - \overline{\pi} \end{array}$	d_i^2
Mean Value $\overline{\pi}$ =			$\sum_{i=1}^{N} d_i^2 =$		

- (1) Calculate the value of π for each measurement.
- (2) Calculate the average or the mean value $\overline{\pi}$.
- (3) Calculate the deviation of each value from its mean $\,d_i = \pi_i \overline{\pi}$.

(4) Calculate
$$d_i^2$$
 and $\sum_{i=1}^N d_i^2$

- (5) Tabulate your results in Table 1.
- (6)Calculate the error in the mean $\Delta \overline{\pi}$ (Standard error)

$$\Delta \overline{\pi} = \sqrt{\frac{\sum_{i}^{n} (d_{i})^{2}}{N(N-1)}}$$

- (7) Plot a graph between c and d and determine the slope of this graph S.
- (8) What does this slope represent?

(9) Calculate the percentage error in π giving the real value of $\pi = 3.143$.

Percentage error =
$$\frac{\left| measured \ value - true \ value \ \right|}{true \ value} \times 100\% =$$

Part II: Measuring the Density of a cylindrical rod.

Object	Diameter	height	Mass	Volume	Density
Object	$d \pm \Delta d$ (cm)	$L\pm \Delta L$ (cm)	$m \pm \Delta m$ (gm)	$V \pm \Delta V$ (cm ³)	$\rho \pm \Delta \rho$ (gm/cm ³)
Cylinder					

Calculation:

The volume of the object = V =

$$\Delta V =$$

Density $\rho =$

 $\Delta \rho =$

Derive the SI unit of density ρ .

Vectors

Name: Grade:

Student's No.: .					D	ay and D	ate:		
Partners Names	:						Se	c.:	• • • • • • • • • • • • • • • • • • • •
Data:									
(1) Use the force	e table to	find the	e resulta	nt R of t	wo vecto	r forces a	and fill th	e table b	elow
Method	F ₁	F ₂	θ1	θ_2	Fx	Fy	R	ØR	Error% In R
Force Table									
Calculation									
Components									
Graphically									
(2) Calculation Compute the res		(magni	tude and	directio	n) by dire	ect calcul	lation:		
$R = \sqrt{}$					_ =			•••••	
$\phi' = tan^{-1}$	——= .	•••••		•••••	, (φ =			
(3) Find R grap	ohically ((triangle	method) using g	graph pap	er.			
From your dra determine:	wing,								
R =									
Ø =									

(4) Method of components: Compute \mathbf{R} by the method of components	
$F_x = \dots$	
$F_y = \dots$	
R =	
$\phi = tan^{-1} \left(\frac{}{} \right) =$	
(5) Find the percentage error P.E. for each case above.	
measured value true value	
$PE = \frac{\left \text{ measured value - true value } \right }{\text{true value}} \times 100\% \text{ (the true value of R is calculated in 1)}$	
(6) Add the following two vectors: $\vec{u} = 1\hat{i} + 2\hat{j}$, $\vec{v} = 2\hat{i} - 5\hat{j}$	
(7) Draw the two vectors described above and add them graphically (i.e. find the resultant)	

(8) Split the 3 vectors drawn below into the two given (x,y) components and add them up.

 $A_x = \dots A_x = \dots$

 $\mathbf{A}_{\mathbf{y}} = \dots$

 $\mathbf{B}_{\mathbf{x}} = \dots$

 $\mathbf{B}_{\mathbf{y}} = \dots$

 $C_x = \dots$

 $C_y = \dots$

 $\mathbf{R}_{\mathbf{x}} = \dots$

 $\mathbf{R}_{\mathbf{x}} = \dots$

$$\vec{B} = ($$
 $)\hat{i} + ($ $)\hat{j}$

$$\vec{C} = ($$
 $)\hat{i} + ($ $)\hat{j}$

$$\vec{R} = ($$
 $)\hat{i} + ($ $)\hat{j}$

(9) In the adjacent Fig. the forces are in equilibrium $\mathbf{F}_1 = 80 \mathrm{g}$ dyn and $\mathbf{F}_2 = 60 \mathrm{g}$ dyn. Determine the resultant vector sum \mathbf{R} of and its direction.

Acceleration on Inclined Plane

Name:	Grade:
Student's No.:	Day and Date:
Partners Names:	Sec.:
Data:	

(1) Measure the sin of the inclination angle $\sin \theta = H / L =$

Trial	X (cm)	t ₁ sec	t ₂ sec	t ₃ sec	\overline{t} sec	$\overline{t}^2 \sec^2$
1						
2						
3						
4						
5						
6						

- (1) For each value of X find the average time squared \overline{t}^2 , and fill them in the table above.
- (2) Plot the distance traveled **X versus** \overline{t}^2 and connect the points with the best two lines. calculate the slope of each, call them S_{max} and S_{min}

(4) Find	$S_{max} = \dots$
	$S_{min} = \dots$

- (5) Find the slope $S = (S_{max} + S_{min})/2 = \dots$
- (6) Find the error in the slope $\Delta S = (S_{max} S_{min})/2$

.....

(7) Find the acceleration due to gravity $g = \frac{a}{\sin\theta} = \frac{2S}{\sin\theta} = \frac{2S}{\sin\theta}$

.....

(8) Find the error in g

 Δg =.....

(9) Questions:

(1) Find the velocity of the glider at the bottom of the inclined plane in terms X, g, and $\sin \theta$.

(2) Is g constant at all locations on earth? Why?

(3) Discuss your result for g.

Exp. No. 4 Newton's second law

Name:	Grade:
Student's No.:	Day and Date:
Partners Names:	Sec ·

Data:

Part I. changing m keeping force constant. ($M_H = \cdots M_G = \cdots$)

M	t_1	t ₂	t ₃	\mathbf{v}_1	V_2	a	1/a
(gram)	sec	sec	sec	cm/sec	v ₂ cm/sec	cm/sec ²	1/a

(1) Plot $\frac{1}{a}$ vs. M and determine M_G from the vertical intercept. $b = \frac{M_H + M_G}{M_H g}$

Determine g by finding the slope
$$S = \frac{1}{M_H g}$$
 $\Rightarrow g = \frac{1}{M_H g}$

Measured	From graph	ΔM_{G} %	Accepted	From graph	Δg
M _G	M _G	M_{G}	g	g	$\frac{28}{g}\%$
(gm)	(gm)		(cm/sec ²)	(cm/sec ²)	
			980		

Part II: Dependence of acceleration on force at constant mass

M (g)	$F_{\text{net}} = M_{\text{H}}g$ (dyne)	t ₁	t ₂	t ₃	\mathbf{v}_1	\mathbf{v}_2	a
IVI (g)	(dyne)	sec	sec	sec	cm/	cm/sec	cm/sec ²

Plot $F_{\text{net}} = M_{\text{H}}g$ versus a, and determine the slope = total mass $\label{eq:S} S = (M_H + M_G + M) = M_G + 50 \quad \text{Find} \quad M_G \text{ From S.}$

Slope = total mass (gm)	(M _G from slope)	(gm)	$\frac{\Delta M_{_G}}{M_{_G}}\%$

Friction

Name:	Grade:
Student's No.:	Day and Date:
Partners Names:	Sec.:

DATA: Part1: Use the horizontal plane and fill the table below:

Trial	M (kg)	m _s (kg)	N=Mg	$f_s = m_s g$	$\mu_s = \frac{f_s}{N}$ $= \frac{m_s g}{Mg}$	m _k (kg)	f _k =m _k g	$\mu_k = \frac{f_k}{N}$ $= \frac{m_k g}{Mg}$
Without								
load								
With								
load								

- (1) What is the value of $\mu_s = \dots$
- (2) What is the value of $\mu_k = \dots$

Part2: Use the inclined plane and fill the table below

Trial	b	Н	$\theta_{\scriptscriptstyle s}$	$\tan \theta_s = h/b$	$\mu_s = \tan \theta_s$	$\overline{\mu}_{\scriptscriptstyle S}$
Without load						
With load						

Trial	θ	m_k	$\cos \theta$	tan θ	μ_k	$\overline{\mu}_k$
Without load						
With load						

<u>Derive the equation</u> $\mu_k = \frac{m_k}{M\cos\theta} - \tan\theta$ and use it to fill the table above.

Noma			rm Acce										
	No.:												
	Names:					•							
Density	of steel, $\rho_{st} = 7.9 \text{ gn}$	n/cm ³ , c	opper p Cu	= 8.23	gm	/cm ³							
Trial	Mass of the ba	ıll	t_1	t_2	t_2		t_3		\overline{t}				
											- - -		
	To show that free f			-				e to g	ravi	ty g	•		
Trial	Mass of the ball	t_{I}	t_2	t_3		\overline{t}		\overline{t}	2		star (m		
1											•		
2													
3													
4													
5													
(1) From	the graph of y vers	$aus \overline{t}^2$											
	slope S and g												
g =													
(2) Calc	ulate the error in g, Δ_i	g=2ΔS											
in the gr	n 1: Prove that the coavity of the earth doe ass of the falling objects	s not de	-										

Question 2: Derive the equation $y = \frac{1}{2}gt^2$.

Atwood's Machine

					At	woou	5 IVIA						
Name: .									. Grade	e:			
Student	's No	.:						Day	and D	ate:			
Partner's	s Nam	es:					••••			.Sec: .			
(1) Fill	the ta	ble be	elow										
	M ₁ (g)	M ₂ (g)	t ₁ (s)	t ₂ (s)	t ₃ (s)	<u>t</u> (s)	$\overline{\mathbf{t}}^{2}$	Y(m)	a_{th}	F _{net}	a _{exp}	$\frac{\mathbf{M}_2 - \mathbf{M}_1}{\mathbf{M}_2 + \mathbf{M}_2}$	
Run ₁													
Run ₂													
Run ₃													
Run ₄													
Run ₅													
Run ₆													
(2) Plot Slope =						ne slope							
g =			•••••										
$\Delta \mathbf{g} = 0$													
Questic													
				wood n	nachine	with							
$M_1 = 0.5$	_		_	C 1		. С. 1							
				f such a 10 m/s ²	•	11 the							

(2) What is the net force in an Atwood machine if M_1 =1 kg and M_2 =2 kg?

Energy Conservation

Name:	Grade:
Student's No.:	Day and Date:
Partners Names:	Sec.:

Table 8.1

Mass1	h(cm)	Y(cm)	t(sec)	x(cm)	V_{th}	V_{exp}

Table 8.2

$E_A = mgh$	$E_B = \frac{7}{10} m(v_{th})^2$	$E_B = \frac{7}{10} m(v_{exp})^2$

Q1. Compare the values calculated in columns 1 with 2 and 3 in table 8.2.

Q2. Is the energy of the rolling sphere conserved between A and B?

Q3. Calculate **the time** of fall from y=40 cm, and find the energy E for x=28 cm in Ergs (Er) and Joules (J). What is the potential energy at point A in Er and J for h=7 cm? What is E at B for this h? (take m=10 gram)

Conservation of Linear Momentum

			Cons	oci valio	II UI		ai Miui	iiciituiii			
Name: .		• • • • • • • • • • • • • • • • • • • •					Grad	e:			
Student	's No.:						Day an	nd Date:			
Partners	s Names:								Sec:		
<u>Part 1</u> :	Collisio	n in 1D.	(Table	1)							
Mass1	Mass2	h(cm)	y(cm)	X (cm)	X' (cm)	x' (cm)	V(cm/s)	V'(cm/s)	v'(cm/s)	
											-
]
(~~	MV		(and	mv'			MV'	,,,,)	MV'+		
(gi	n.cm/sec)	(gii	n.cm/sec)			(gm.cm/s	sec)	(gm.cn	n/sec)	
											1
Q1. Co	mpare tl	he value	s calcul	ated in co	olum	ns 1 a	nd 4. (T	hey must	be equal)		
	: Collisio						· ·	·	• ′		
Mass1	Mas	s2 h	(cm)	\vec{R} (cm)	Ŕ'	(cm)	r'(cm	θ_1	θ_2	$\theta = \theta_2$	$\frac{1}{2}-\theta_1$
h(cm	P_i	$^{2}=(MI)$	$(R)^2$	P_{j}	$\frac{1}{r} = ($	MR'	$)^{2} + (mr)^{2}$	$(-1)^2 + 2(M)^2$	AR')(mr'	$)cos\theta$	
Table (3)										
Mass	1=Mass2	2 h	(cm)	X (cm)	X'	(cm)	x'(cm	n) θ		$\vec{X} + \vec{x}$	
									ϵ	$\theta = \theta_2 - \theta_1$	
Q2. Con	mpare the	e values	calculat	ed in colu	mns	2 and	3. (They	must be e	qual)		
Q3. Sin	ce \vec{p}_i =	= $ec{p}_f$ an	d \vec{p}_i is	along the	x-dir	rection	n, check v	whether $p_{_{_{.}}}$	$f_{y}=0$.		
	om table (3, measu	ire vecto	rs X , X'	, and	ι x',	find the s	sum <u>from t</u>	<u>he graph,</u> d	oes this su	ım

			The Pen	aulun	1						
Name:					Grade	:					
Student	.'s No.:				Day and Date:						
<u> Part 1</u> :	Determine the	spring constan	t.								
Trial	Total mas	Total mass Spring elongation			Force of avity(dyne)		ng constant yne/cm)				
	M (gm)		(cm)		mg (dyne)	K = mg	/X (dyne/cm)				
1											
2											
3											
5											
(2) Plot Determ	Spring Harmo	slope = $S = k =$	Avg.								
m(g)	t₁ (for 10 Oscillations)	(for 10 Oscillations)	Period $T = \frac{(t_1+t_2)/20}{}$	T ²							
Plot T ²	versus m a	and determine l	k from slope	S							
	ne table below)		PC								

Slope = S= $4 \pi^2/k$ \rightarrow $k = 4 \pi^2/S =$

Part 3: Pendulum.

L(length) (cm)	t ₁ (for 10 Oscillations)	t ₂ (for 10 Oscillations)	$T = (t_1 + t_2)/20$	T^2

Plot T^2 versus L and determine **g** from slope **S**

Slope =
$$S = 4 \pi^2/g$$

$$g = 4 \pi^2/S =$$

Questions:

1- Is the period of the simple pendulum, in general depends on the amplitude?

2-What is the relation between k's and k'eq for parallel and series combinantion?

3- If the length of pendulum clock depends on temperature, in summer will the clock gain or lose time? Explain your answer.

Exp. No.11 The Viscosity

Name:	Grade:		
Student's No.:	Day and Date:		
Partners Names:	Sec:		

Part 1: to show that a small sphere falls with a constant terminal velocity.

Construct a velocity-time graph and a velocity-distance graph. These will show the ball bearing accelerating until it reaches terminal velocity.

h(cm)	t ₁ (sec)	t ₂ (sec)	t ₃ (sec)	t (sec)	v=h/t̄ cm/sec

Plot h vs \overline{t} and determine v_t

Part 2: Determination of the coefficient of viscosity:

Repeating the experiment with ball bearings of different mass and diameter will show that the terminal velocities of different bodies are different.

Sphere density = 7.8 gm/cm³ Liquid density = 1.12 gm/cm³ h =50 cm

d(cm)	d ²	t ₁ (s)	t ₂ (s)	t ₃ (s)	\overline{t} (s)	V	η

Plot a graph of d^2 vs. v_t . From the graph,

Determine the coefficient of viscosity.

The slope = S =

The coefficient of viscosity η =

What is the unit of η :