CHAPTER

SOFTWARE TESTING
STRATEGIES

Key strategy for software testing provides a road map that describes the
CONCEPTS steps to be conducted as part of testing, when these steps are planned
dlpha fest. 485 and then undertaken, and how much effort, time, and resources will
beta test 485 be required. Therefore, any testing strategy must incorporate test planning,
:::;z;;':‘ 477 test-case design, test execution, and resultant data collection and evaluation.
dass testing.. . .. 481 A software testing strategy should be flexible enough to promote a custom-
:::':l:i:;:.""g:% ized testing approach. At the same time, it must be rigid enough to encour-
configuration age reasonable planning and management tracking as the project progresses.
review......... 434 Shooman [Sho83] discusses these issues:

debugging. 438

depl.oymeni In many ways, testing is an individualistic process, and the number of different
Le"s:::g :;; types of tests varies as much as the different development approaches. For many
independent test years, our only defense against programming errors was careful design and the
?;;‘::umn """) native intelligence of the programmer. We are now in an era in which modern
testing......... 475 design techniques [and technical reviewsl are helping us to reduce the number of
object-oriented initial errors that are inherent in the code. Similarly, different test methods are
;::;:lr(:r::n;; """ d beginning to cluster themselves into several distinct approaches and philosophies.
testing......... 487

recovery festing . . 486 These “approaches and philosophies” are what we call strategy—the topic

regression testing . 478 to be presented in this chapter. In Chapters 23 through 26, the testing methods
security testing. . . 486
smoke testing. . . . 479
stress testing 487
stubs 475

system testing . .. 486

test strogies for 22.1 A STRATEGIC APPROACH TO SOFTWARE TESTING

MobileApps 483)) o)

test strategies for Testing is a set of activities that can be planned in advance and conducted

WebApps 482 systematically. For this reason a template for software testing—a set of steps
into which we can place specific test-case design techniques and testing meth-
ods—should be defined for the software process.

and techniques that implement the strategy are presented.

(21if{es¢ | What is it? Software is tested to conducted as you add new components to a
Looxk uncover errors that were made in- large system? When should you involve the
advertently as it was designed and customer? These and many other questions are
constructed. But how do you conduct answered when you develop a software testing
the tests2 Should you develop a formal plan for strategy.
your testse Should you test the entire program Who does it? A strategy for software testing is
as a whole or run tests only on a small part developed by the project manager, software
of it2 Should you rerun fests you've already engineers, and testing specialists.

466

CHAPTER 22 SOFTWARE TESTING STRATEGIES

Why is it important? Testing often accounts
for more project effort than any other software
engineering action. If it is conducted hap-
hazardly, time is wasted, unnecessary effort
is expended, and even worse, errors sneak
through undetected. It would therefore seem
reasonable to establish a systematic strategy
for testing software.

What are the steps? Testing begins “in
the small” and progresses “to the large.”
By this we mean that early testing focuses
on a single component or on a small group
of related components and applies tests to
uncover errors in the data and processing
logic that have been encapsulated by the
component(s). After components are tested
they must be integrated until the complete
system is constructed. At this point, a series

of high-order tests are executed to uncover er-
rors in meeting customer requirements. As er-
rors are uncovered, they must be diagnosed
and corrected using a process that is called
debugging.

What is the work product? A Test Specifica-

tion documents the software team’s approach
to testing by defining a plan that describes an
overall strategy and a procedure that defines
specific testing steps and the types of tests that
will be conducted.

How do | ensure that I’'ve done it right? By

reviewing the Test Specification prior fo testing,
you can assess the completeness of test cases
and festing tasks. An effective test plan and
procedure will lead to the orderly construction
of the software and the discovery of errors at
each stage in the construction process.

467

thread-based

testing......... 482
top-down

integration 476
unit testing. 473
validation. 468
validation testing . 483
verification. 468

Useful resources for
software testing can
be found at
www.mtsu
.edu/~storm/.

A number of software testing strategies have been proposed in the literature.
All provide you with a template for testing and all have the following generic
characteristics:

e To perform effective testing, you should conduct effective technical re-
views (Chapter 20). By doing this, many errors will be eliminated before
testing commences.

e Testing begins at the component level and works “outward” toward the in-
tegration of the entire computer-based system.

e Different testing techniques are appropriate for different software engi-
neering approaches and at different points in time.

e Testing is conducted by the developer of the software and (for large proj-
ects) an independent test group.

e Testing and debugging are different activities, but debugging must be ac-
commodated in any testing strategy.

A strategy for software testing must accommodate low-level tests that are
necessary to verify that a small source code segment has been correctly imple-
mented as well as high-level tests that validate major system functions against
customer requirements. A strategy should provide guidance for the practitioner
and a set of milestones for the manager. Because the steps of the test strategy
occur at a time when deadline pressure begins to rise, progress must be measur-

able and problems should surface as early as possible.

468

Quoie:

“Testing is the
unavoidable part
of any responsible
effort to develop a
software system.”

William Howden

ﬁpwcss

Don't get sloppy

and view festing as

a “sufety net” that
will catch all errors
that occurred because
of weak soffware
engineering practices.
It won't. Stress quality
and error defection
throughout the soft-
ware process.

Quoie:

“Optimism is
the occupational
hazard of
programming;
testing is the
treatment.”

Kent Beck

PART THREE QUALITY MANAGEMENT

22.1.1 Verification and Validation

Software testing is one element of a broader topic that is often referred to as ver-
ification and validation (V&V). Verification refers to the set of tasks that ensure
that software correctly implements a specific function. Validation refers to a dif-
ferent set of tasks that ensure that the software that has been built is traceable to
customer requirements. Boehm [Boe811 states this another way:

Verification: “Are we building the product right?”

Validation: “Are we building the right product?”

The definition of V&V encompasses many software quality assurance activities
(Chapter 21).!

Verification and validation includes a wide array of SQA activities: technical
reviews, quality and configuration audits, performance monitoring, simulation,
feasibility study, documentation review, database review, algorithm analysis, de-
velopment testing, usability testing, qualification testing, acceptance testing, and
installation testing. Although testing plays an extremely important role in V&V,
many other activities are also necessary.

Testing does provide the last bastion from which quality can be assessed and,
more pragmatically, errors can be uncovered. But testing should not be viewed
as a safety net. As they say, “You can’t test in quality. If it’s not there before you
begin testing, it won’t be there when you're finished testing.” Quality is incor-
porated into software throughout the process of software engineering. Proper
application of methods and tools, effective technical reviews, and solid manage-
ment and measurement all lead to quality that is confirmed during testing.

Miller IMil77] relates software testing to quality assurance by stating that
“the underlying motivation of program testing is to affirm software quality with
methods that can be economically and effectively applied to both large-scale and
small-scale systems.”

22.1.2 Organizing for Software Testing

For every software project, there is an inherent conflict of interest that occurs
as testing begins. The people who have built the software are now asked to test
the software. This seems harmless in itself; after all, who knows the program
better than its developers? Unfortunately, these same developers have a vested
interest in demonstrating that the program is error-free, that it works according
to customer requirements, and that it will be completed on schedule and within
budget. Each of these interests mitigates against thorough testing.

1 It should be noted that there is a strong divergence of opinion about what types of testing con-
stitute “validation.” Some people believe that all testing is verification and that validation is
conducted when requirements are reviewed and approved, and later, by the user when the sys-
tem is operational. Other people view unit and integration testing (Sections 22.3.1 and 22.3.2) as
verification and higher-order testing (Sections 22.6 and 22.7) as validation.

An independent

test group does not
have the “conflict of
interest” that builders
of the software might
experience.

Quoie:

“The first mistake
that people make
is thinking that
the testing feam
is responsible for
assuring quality.”

Brian Marick

CHAPTER 22 SOFTWARE TESTING STRATEGIES 469

From a psychological point of view, software analysis and design (along with
coding) are constructive tasks. The software engineer analyzes, models, and
then creates a computer program and its documentation. Like any builder, the
software engineer is proud of the edifice that has been built and looks askance at
anyone who attempts to tear it down. When testing commences, there is a subtle,
yet definite, attempt to “break” the thing that the software engineer has built.
From the point of view of the builder, testing can be considered to be (psycholog-
ically) destructive. So the builder treads lightly, designing and executing tests
that will demonstrate that the program works, rather than to uncover errors.
Unfortunately, errors will be nevertheless present. And, if the software engineer
doesn’t find them, the customer will!

There are often a number of misconceptions that you might infer from the
preceding discussion: (1) that the developer of software should do no testing at
all, (2) that the software should be “tossed over the wall” to strangers who will test
it mercilessly, (3) that testers get involved with the project only when the testing
steps are about to begin. Each of these statements is incorrect.

The software developer is always responsible for testing the individual units
(components) of the program, ensuring that each performs the function or ex-
hibits the behavior for which it was designed. In many cases, the developer also
conducts integration testing—a testing step that leads to the construction (and
test) of the complete software architecture. Only after the software architecture
is complete does an independent test group become involved.

The role of an independent test group (ITG) is to remove the inherent problems
associated with letting the builder test the thing that has been built. Independent
testing removes the conflict of interest that may otherwise be present. After all,
ITG personnel are paid to find errors.

However, you don’t turn the program over to ITG and walk away. The devel-
oper and the ITG work closely throughout a software project to ensure that thor-
ough tests will be conducted. While testing is conducted, the developer must be
available to correct errors that are uncovered.

The ITG is part of the software development project team in the sense that it
becomes involved during analysis and design and stays involved (planning and
specifying test procedures) throughout a large project. However, in many cases
the ITG reports to the software quality assurance organization, thereby achiev-
ing a degree of independence that might not be possible if it were a part of the
software engineering team.

22.1.3 Software Testing Strategy—The Big Picture

The software process may be viewed as the spiral illustrated in Figure 22.1.
Initially, system engineering defines the role of software and leads to software
requirements analysis, where the information domain, function, behavior, per-
formance, constraints, and validation criteria for software are established. Mov-
ing inward along the spiral, you come to design and finally to coding. To develop

470

PART THREE QUALITY MANAGEMENT

Testing
strategy

What is
® the overall
strategy for
software testing?

Useful resources for
software testers can
be found ot www
.SQAtester.com.

System testing
Validation testing

Integration festing

Unit testing

S e

Code

Design
Requirements
System engineering

computer software, you spiral inward along streamlines that decrease the level
of abstraction on each turn.

A strategy for software testing may also be viewed in the context of the spiral
(Figure 22.1). Unit testing begins at the vortex of the spiral and concentrates on
each unit (e.g., component, class, or WebApp content object) of the software as
implemented in source code. Testing progresses by moving outward along the
spiral to integration testing, where the focus is on design and the construction of
the software architecture. Taking another turn outward on the spiral, you en-
counter validation testing, where requirements established as part of require-
ments modeling are validated against the software that has been constructed.
Finally, you arrive at system testing, where the software and other system ele-
ments are tested as a whole. To test computer software, you spiral out along
streamlines that broaden the scope of testing with each turn.

Considering the process from a procedural point of view, testing within the
context of software engineering is actually a series of four steps that are im-
plemented sequentially. The steps are shown in Figure 22.2. Initially, tests focus
on each component individually, ensuring that it functions properly as a unit.
Hence, the name unit testing. Unit testing makes heavy use of testing techniques
that exercise specific paths in a component’s control structure to ensure com-
plete coverage and maximum error detection. Next, components must be assem-
bled or integrated to form the complete software package. Integration testing
addresses the issues associated with the dual problems of verification and pro-
gram construction. Test-case design techniques that focus on inputs and out-
puts are more prevalent during integration, although techniques that exercise
specific program paths may be used to ensure coverage of major control paths.
After the software has been integrated (constructed), a set of high-order tests is
conducted. Validation criteria (established during requirements analysis) must
be evaluated. Validation testing provides final assurance that software meets all
functional, behavioral, and performance requirements.

CHAPTER 22 SOFTWARE TESTING STRATEGIES

/

Requirements

471

Software test-
ing steps

High-order
tests

Integration test

Testing
“direction”

The last high-order testing step falls outside the boundary of software engi-
neering and into the broader context of computer system engineering. Software,
once validated, must be combined with other system elements (e.g., hardware,
people, databases). System testing verifies that all elements mesh properly and

that overall system function/performance is achieved.

Preparing for Testing

The scene: Doug Miller's office, as
componentlevel design continues and
construction of certain components begins.

The players: Doug Miller, software engineering man-
ager, Vinod, Jamie, Ed, and Shakira—members of the
SafeHome software engineering team.

The conversation:

Doug: It seems to me that we haven't spent enough
time talking about testing.

Vinod: True, but we've all been just a little busy. And
besides, we have been thinking about it . . . in fact,
more than thinking.

Doug (smiling): | know . . . we're all overloaded, but
we've still got to think down the line.

Shakira: | like the idea of designing unit tests before |
begin coding any of my components, so that's what I've
been trying fo do. | have a pretty big file of tests to run
once code for my components is complete.

Doug: That's an Extreme Programming [an agile soft-
ware development process, see Chapter 5] concept, no?

Ed: It is. Even though we're not using Extreme Program-
ming per se, we decided that it'd be a good idea to
design unit tests before we build the component—the
design gives us all of the information we need.

Jamie: |'ve been doing the same thing.

Vinod: And I've taken on the role of the integrator, so
every time one of the guys passes a component to me,

I'll integrate it and run a series of regression tests on the
partially integrated program. I've been working to design
a sef of appropriate tests for each function in the system.

Doug (to Vinod): How often will you run the tests@

Vinod: Every day . . . until the system is inte-
grated . . .well, | mean until the software increment we
plan to deliver is integrated.

Doug: You guys are way ahead of me!

Vinod (laughing): Anticipation is everything in the
software biz, Boss.

