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FIGURE 2.6 Heat
transfer to H,O.

Most complex molecules, such as typical polyatomic molecules, are usually three-
dimensional in structure and have multiple vibrational modes, each of which contributes to
the energy storage of the molecule. The more complicated the molecule is, the larger the
number of degrees of freedom that exist for energy storage. The modes of energy storage
and their evaluation are discussed in some detail in Appendix C for those interested in
further development of the quantitative effects from a molecular viewpoint.

This general discussion can be summarized by referring to Fig. 2.6. Let heat be
transferred to H,O. During this process the temperature of the liquid and vapor (steam)
will increase, and eventually all the liquid will become vapor. From the macroscopic point
of view, we are concerned only with the energy that is transferred as heat, the change in
properties such as temperature and pressure, and the total amount of energy (relative to
some base) that the H,O contains at any instant. Thus, questions about how energy is stored
in the H,0O do not concern us. From a microscopic viewpoint, we are concerned about the
way in which energy is stored in the molecules. We might be interested in developing a
model of the molecule so that we can predict the amount of energy required to change
the temperature a given amount. Although the focus in this book is on the macroscopic or
classical viewpoint, it is helpful to keep in mind the microscopic or statistical perspective as
well, as the relationship between the two helps us understand basic concepts such as energy.

In-Text Concept Questions

a. Make a control volume around the turbine in the steam power plant in Fig. 1.1 and
list the flows of mass and energy located there.

b. Take a control volume around your kitchen refrigerator, indicate where the compo-
nents shown in Fig. 1.6 are located, and show all energy transfers.

2.7| SPECIFIC VOLUME AND DENSITY

The specific volume of a substance is defined as the volume per unit mass and is given
the symbol v. The density of a substance is defined as the mass per unit volume, and it
is therefore the reciprocal of the specific volume. Density is designated by the symbol p.
Specific volume and density are intensive properties.

The specific volume of a system in a gravitational field may vary from point to point.
For example, if the atmosphere is considered a system, the specific volume increases as
the elevation increases. Therefore, the definition of specific volume involves the specific
volume of a substance at a point in a system.

Consider a small volume § V of a system, and let the mass be designated §m. The
specific volume is defined by the relation

y= lim —
sV—sy 61

where § V' is the smallest volume for which the mass can be considered a continuum.
Volumes smaller than this will lead to the recognition that mass is not evenly distributed in
space but is concentrated in particles as molecules, atoms, electrons, etc. This is tentatively
indicated in Fig. 2.7, where in the limit of a zero volume the specific volume may be infinite
(the volume does not contain any mass) or very small (the volume is part of a nucleus).
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FIGURE 2.7 The
continuum limit for the
specific volume.

FIGURE 2.8 Density

of common substances.

o’ oV

Thus, in a given system, we should speak of the specific volume or density at a point
in the system and recognize that this may vary with elevation. However, most of the systems
that we consider are relatively small, and the change in specific volume with elevation is
not significant. Therefore, we can speak of one value of specific volume or density for the
entire system.

Inthis book, the specific volume and density will be given either on a mass or amole ba-
sis. A bar over the symbol (lowercase) will be used to designate the property on a mole basis.
Thus, ¥ will designate molal specific volume and p will designate molal density. In SI units,
those for specific volume are m3/kg and m®/mol (or m3/kmol); for density the corresponding
units are kg/m® and mol/m* (or kmol/m®). In English units, those for specific volume are
ft3/lbm and ft*/lb mol; the corresponding units for density are Ibm/ft® and Ib mol/ft3.

Although the SI unit for volume is the cubic meter, a commonly used volume unit is
the liter (L), which is a special name given to a volume of 0.001 cubic meters, thatis, 1 L. =
10~% m3. The general ranges of density for some common solids, liquids, and gases are
shown in Fig. 2.8. Specific values for various solids, liquids, and gases in SI units are listed
in Tables A.3, A.4, and A.5, respectively, and in English units in Tables F.2, F.3, and F.4.

Gases Solids
Gasin Atm. Fiber Wood Al Lead
vacuum air Cotton lce
Wool Rock Ag Au

Propane Water Hg

11 IIIIIIII 11 IIIIIIII 11 IIIIIIII 1| IIIIIIII 11 IIIIIIII 11 IIIIIIII 1 1 1 1
1072 10" 100 10° 102 103 104
Density [kg/m3]
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EXAMPLE 2.2 A 1 m? container, shown in Fig. 2.9, is filled with 0.12 m3 of granite, 0.15 m* of sand, and
0.2 m® of liquid 25°C water; the rest of the volume, 0.53 m?, is air with a density of 1.15
kg/m3. Find the overall (average) specific volume and density.

Solution
From the definition of specific volume and density we have
v=V/m and p=m/V=1/v
We need to find the total mass, taking density from Tables A.3 and A.4:
Mgranite = PVgranite = 2750 kg/m® x 0.12m* = 330 kg
Msand = Psand Veand = 1500 kg/m® x 0.15 m? = 225 kg

Myater = Pwater Vavater = 997 kg/m® x 0.2 m3 = 199.4 kg
Mgir = pair Vair = 1.15kg/m® x 0.53 m® = 0.61 kg

Air

FIGURE 2.9 Sketch for Example 2.2.

Now the total mass becomes
Mot = Mgranite + Msand + Mwater + Mair = 755 kg
and the specific volume and density can be calculated:
v = Viot/ M = 1 m®/755 kg = 0.001325 m3/kg
0 = Mt/ Vige = 755 kg/1 m3 = 755 kg/m®

Remark: It is misleading to include air in the numbers for p and V, as the air is separate
from the rest of the mass.

In-Text Concept Questions

c. Why do people float high in the water when swimming in the Dead Sea as compared
with swimming in a freshwater lake?

d. The density of liquid water is p = 1008 — T/2 [kg/m?| with T in °C. If the temperature
increases, what happens to the density and specific volume?
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FIGURE 2.10 The
balance of forces on a
movable boundary
relates to inside gas
pressure.

2.8| PRESSURE

When dealing with liquids and gases, we ordinarily speak of pressure; for solids we speak
of stresses. The pressure in a fluid at rest at a given point is the same in all directions, and
we define pressure as the normal component of force per unit area. More specifically, if §A4
is a small area, § A4’ is the smallest area over which we can consider the fluid a continuum,
and § 7}, is the component of force normal to 54, we define pressure, 7, as

P= lim L
sA—s4 8 A
where the lower limit corresponds to sizes as mentioned for the specific volume, shown in
Fig. 2.7. The pressure Pat a point in a fluid in equilibrium is the same in all directions. In
a viscous fluid in motion, the variation in the state of stress with orientation becomes an
important consideration. These considerations are beyond the scope of this book, and we
will consider pressure only in terms of a fluid in equilibrium.
The unit for pressure in the International System is the force of one newton acting on
a square meter area, which is called the pascal (Pa). That is,

1Pa=1N/m?

Two other units, not part of the International System, continue to be widely used.
These are the bar, where

1 bar = 10° Pa = 0.1 MPa
and the standard atmosphere, where
1 atm = 101 325 Pa = 14.696 1bf/in.?

which is slightly larger than the bar. In this book, we will normally use the SI unit, the pascal,
and especially the multiples of kilopascal and megapascal. The bar will be utilized often
in the examples and problems, but the atmosphere will not be used, except in specifying
certain reference points.

Consider a gas contained in a cylinder fitted with a movable piston, as shown in
Fig. 2.10. The pressure exerted by the gas on all of its boundaries is the same, assuming
that the gas is in an equilibrium state. This pressure is fixed by the external force acting
on the piston, since there must be a balance of forces for the piston to remain stationary.
Thus, the product of the pressure and the movable piston area must be equal to the external
force. If the external force is now changed in either direction, the gas pressure inside must
accordingly adjust, with appropriate movement of the piston, to establish a force balance
at a new equilibrium state. As another example, if the gas in the cylinder is heated by an
outside body, which tends to increase the gas pressure, the piston will move instead, such
that the pressure remains equal to whatever value is required by the external force.

l— —

lt—
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EXAMPLE 2.3 The hydraulic piston/cylinder system shown in Fig. 2.11 has a cylinder diameter of D =
0.1 m with a piston and rod mass of 25 kg. The rod has a diameter of 0.01 m with an
outside atmospheric pressure of 101 kPa. The inside hydraulic fluid pressure is 250 kPa.
How large a force can the rod push within the upward direction?

Solution
We will assume a static balance of forces on the piston (positive upward), so
Fe=ma=0

= Iyl Acyl - R)(Acyl - Arod) - F— mp8

FIGURE 2.11 Sketch for Example 2.3.

Solve for F*
1F= Pcyl Acyl N H](Acyl — Awod) — mpg
The areas are

A = mr? = 1 D2/4 = %0.12 m? = 0.007 854 m?

Ag =nrt =w D?J4 = %0.012 m? = 0.000 078 54 m?
So the force becomes
F = [250 x 0.007 854 — 101(0.007 854 — 0.000 078 54)]1000 — 25 x 9.81
= 1963.5 — 785.32 — 245.25
= 9329N

Note that we must convert kPa to Pa to get units of N.

In most thermodynamic investigations we are concerned with absolute pressure. Most
pressure and vacuum gauges, however, read the difference between the absolute pressure
and the atmospheric pressure existing at the gauge. This is referred to as gauge pressure.
It is shown graphically in Fig. 2.12, and the following examples illustrate the principles.
Pressures below atmospheric and slightly above atmospheric, and pressure differences (for
example, across an orifice in a pipe), are frequently measured with a manometer, which
contains water, mercury, alcohol, oil, or other fluids.

Consider the column of fluid of height A standing above point B in the manometer
shown in Fig. 2.13. The force acting downward at the bottom of the column is

RA+mg= RA+pAgH

where m is the mass of the fluid column, A is its cross-sectional area, and p is its density.
This force must be balanced by the upward force at the bottom of the column, which is PzA.
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FIGURE 2.12
lllustration of terms
used in pressure

measurement.
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FIGURE 2.14

Barometer.

P
Pabs,1 T
Ordinary pressure gauge
AP =Pabs,1 _Patm
Patm T
Ordinary vacuum gauge
AP = Patm - Pabs,2
Pabs,2 T
Barometer reads
atmospheric pressure
0
Therefore,

Pp— Ry =pgH
Since points A and B are at the same elevation in columns of the same fluid, their pressures
must be equal (the fluid being measured in the vessel has a much lower density, such that
its pressure Pis equal to P,). Overall,
AP=P—- R =pgH (2.2)
For distinguishing between absolute and gauge pressure in this book, the term pasca/
will always refer to absolute pressure. Any gauge pressure will be indicated as such.
Consider the barometer used to measure atmospheric pressure, as shown in Fig.
2.14. Since there is a near vacuum in the closed tube above the vertical column of fluid,
usually mercury, the heigh of the fluid column gives the atmospheric pressure directly from
Eq. 2.2:

Fam = pgHy (2.3)

Patm=P0

FIGURE 2.13 Example of pressure

measurement using a column of fluid.
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EXAMPLE 2.4

A mercury barometer located in a room at 25°C has a height of 750 mm. What is the
atmospheric pressure in kPa?

Solution

The density of mercury at 25°C is found from Appendix Table A.4 to be 13 534 kg/m.}
Using Eq. 2.3,
Pim = pgHy = 13 534 x 9.806 65 x 0.750/1000
= 99.54 kPa

EXAMPLE 2.5

A mercury (Hg) manometer is used to measure the pressure in a vessel as shown in
Fig. 2.13. The mercury has a density of 13 590 kg/m?®, and the height difference between the
two columns is measured to be 24 cm. We want to determine the pressure inside the vessel.

Solution

The manometer measures the gauge pressure as a pressure difference. From Eq. 2.2,
AP = Fyyge = pgH = 13590 x 9.806 65 x 0.24

k
= 31985-2 m = 31985 Pa = 31.985 kPa
m° S

= 0.316 atm
To get the absolute pressure inside the vessel, we have
Py = Resset = Pp= AP+ B
We need to know the atmospheric pressure measured by a barometer (absolute pressure).

Assume that this pressure is known to be 750 mm Hg. The absolute pressure in the vessel
becomes

Riessel = AP+ Fym = 31985 + 13590 x 0.750 x 9.806 65
= 31985+ 99954 = 131 940 Pa = 1.302 atm

EXAMPLE 2.5E

A mercury (Hg) manometer is used to measure the pressure in a vessel as shown in
Fig. 2.13. The mercury has a density of 848 Ibm/ft*, and the height difference between the
two columns is measured to be 9.5 in. We want to determine the pressure inside the vessel.

Solution

The manometer measures the gauge pressure as a pressure difference. From Eq. 2.2,
AP = Rgauge = pgH
lbm

fi ,
= 8485 X 32ATAG X 9.5 X g X | S T bm it

fit’ [ 11bf s? }
= 4.66 1bf/in.2
To get the absolute pressure inside the vessel, we have

PAZR/esseIZH)ZAP+})zntm
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We need to know the atmospheric pressure measured by a barometer (absolute pressure).
Assume that this pressure is known to be 29.5 in. Hg. The absolute pressure in the vessel
becomes

Pvessel =AP+ Bum
= 848 x 32.174 x 29.5 x
= 19.14 Ibf/in.?

1 1
1728 (32.174) y

EXAMPLE 2.6

What is the pressure at the bottom of the 7.5-m-tall storage tank of fluid at 25°C shown
in Fig. 2.15? Assume that the fluid is gasoline with atmospheric pressure 101 kPa on the
top surface. Repeat the question for the liquid refrigerant R-134a when the top surface
pressure is 1 MPa.

Solution
The densities of the liquids are listed in Table A.4:

Pgasoline = 750 kg/m3; PR-134a = 1206 kg/m3

The pressure difference due to gravity is, from Eq. 2.2,

AP=pgH
for Bxample 2.6. The total pressure is
P=Ryp+ AP
For the gasoline we get
AP = pgH = T750kg/m® x 9.807 m/s? x 7.5m = 55 164 Pa
Now convert all pressures to kPa:
P =101+ 55.164 = 156.2kPa
For the R-134a we get
AP = pgH = 1206 kg/m® x 9.807 m/s* x 7.5m = 88 704 Pa
Now convert all pressures to kPa:
P =1000 + 88.704 = 1089 kPa
EXAMPLE 2.7 A piston/cylinder with a cross-sectional area of 0.01 m? is connected with a hydraulic

line to another piston/cylinder with a cross-sectional area of 0.05 m?. Assume that both
chambers and the line are filled with hydraulic fluid of density 900 kg/m® and the larger
second piston/cylinder is 6 m higher up in elevation. The telescope arm and the buckets have
hydraulic piston/cylinders moving them, as seen in Fig. 2.16. With an outside atmospheric
pressure of 100 kPa and a net force of 25 kN on the smallest piston, what is the balancing
force on the second larger piston?
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FIGURE 2.16 Sketch for Example 2.7.

Solution

When the fluid is stagnant and at the same elevation, we have the same pressure throughout
the fluid. The force balance on the smaller piston is then related to the pressure (we neglect
the rod area) as

H+ RA=PRA4
from which the fluid pressure is
P, = R+ F/A =100kPa 4 25kN/0.01 m? = 2600 kPa
The pressure at the higher elevation in piston/cylinder 2 is, from Eq. 2.2,
B = B — pgH = 2600 kPa — 900 kg/m* x 9.81 m/s? x 6 m/(1000 Pa/kPa)
= 2547 kPa

where the second term is divided by 1000 to convert from Pa to kPa. Then the force balance
on the second piston gives

B+ hA= B4

F, = (P, — R)A4; = (2547 — 100) kPa x 0.05 m? = 122.4 kN

In-Text Concept Questions

e. A car tire gauge indicates 195 kPa; what is the air pressure inside?

f. Canlalwaysneglect A Pinthe fluid above location Ain Fig. 2.13? What circumstances
does that depend on?

g. A U tube manometer has the left branch connected to a box with a pressure of
110 kPa and the right branch open. Which side has a higher column of fluid?

2.9| EQUALITY OF TEMPERATURE

Although temperature is a familiar property, defining it exactly is difficult. We are aware
of temperature first of all as a sense of hotness or coldness when we touch an object. We
also learn early that when a hot body and a cold body are brought into contact, the hot body
becomes cooler and the cold body becomes warmer. If these bodies remain in contact for




