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and
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Note that in Eqgs. 4.5 and 4.6 we did not say that the work is equal to the expressions
given in these equations. These expressions give us the value of a certain integral, that is,
a mathematical result. Whether or not that integral equals the work in a particular process
depends on the result of a thermodynamic analysis of that process. It is important to keep the
mathematical result separate from the thermodynamic analysis, for there are many situations
in which work is not given by Eq. 4.4.

The polytropic process as described demonstrates one special functional relationship
between Pand V during a process. There are many other possible relations, some of which
will be examined in the problems at the end of this chapter.

EXAMPLE 4.1

FIGURE 4.7
Sketch for
Example 4.1.

Consider as a system the gas in the cylinder shown in Fig. 4.7; the cylinder is fitted with
a piston on which a number of small weights are placed. The initial pressure is 200 kPa,
and the initial volume of the gas is 0.04 m®.

a. Let a Bunsen burner be placed under the cylinder, and let the volume of the gas increase
to 0.1 m® while the pressure remains constant. Calculate the work done by the system
during this process.

2
W = / pPdv
1
Since the pressure is constant, we conclude from Eq. 4.4 that
2
=P [ av=P(i- 1)
1

| Wy = 200kPa x (0.1 — 0.04)m3 = 12.0k]

b. Consider the same system and initial conditions, but at the same time that the Bunsen
burner is under the cylinder and the piston is rising, remove weights from the piston at
such a rate that, during the process, the temperature of the gas remains constant.

If we assume that the ideal-gas model is valid, then, from Eq. 3.5,

PV =mRT

We note that this is a polytropic process with exponent 7 = 1. From our analysis, we
conclude that the work is given by Eq. 4.4 and that the integral in this equation is given
by Eq. 4.6. Therefore,

2 1A
1VVz=/PdV=P1Viln—
1 4

0.10
= 200 kP 04md xIn — =733k
00 axOOmxn0'04 7.33k]J
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FIGURE 4.8 P-v
diagram showing work
done in the various
processes of Example
4.1.

c. Consider the same system, but during the heat transfer remove the weights at such
a rate that the expression PV'3 = constant describes the relation between pressure
and volume during the process. Again, the final volume is 0.1 m®. Calculate the
work.

This is a polytropic process in which 7= 1.3. Analyzing the process, we conclude
again that the work is given by Eq. 4.4 and that the integral is given by Eq. 4.5. Therefore,

0.04\'*
P =200 (m> — 60.77 kPa
2 _ -
IWZ:/ pay_ BVe— RV _ 60.77 x 0.1-200 x 0.04 1
] 1-1.3 1-1.3
—6.41 kJ

d. Consider the system and the initial state given in the first three examples, but let the

piston be held by a pin so that the volume remains constant. In addition, let heat
be transferred from the system until the pressure drops to 100 kPa. Calculate the
work.

Since § W= P dV for a quasi-equilibrium process, the work is zero, because there
is no change in volume.

The process for each of the four examples is shown on the -1 diagram of Fig. 4.8.
Process 1-2a is a constant-pressure process, and area 1-2a-f-e-1 represents the work.
Similarly, line 1-25 represents the process in which PV = constant, line 1-2¢ the process
in which PV!® = constant, and line 1-2d the constant-volume process. The student should
compare the relative areas under each curve with the numerical results obtained for the
amounts of work done.

2d

m______
~p— — ]
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EXAMPLE 4.2

Consider a slightly different piston/cylinder arrangement, as shown in Fig. 4.9. In this
example the piston is loaded with a mass m,, the outside atmosphere £, a linear spring,
and a single point force F;. The piston traps the gas inside with a pressure P. A force
balance on the piston in the direction of motion yields

m,,a%O:ZFT—ZFL

with a zero acceleration in a quasi-equilibrium process. The forces, when the spring is in
contact with the piston, are

Y R=PA Y F=mg+RA+kx—x)+H

with the linear spring constant, &,. The piston position for a relaxed spring is xp, which
depends on how the spring is installed. The force balance then gives the gas pressure by
division with area A as

P= R+ |myg+ F + ks(x — x0)|/ A

To illustrate the process in a P- I/ diagram, the distance xis converted to volume by
division and multiplication with A:

mpg Fi ks
P:P()+T+7+E(V_ I/('))ZCI‘FCZV

This relation gives the pressure as a linear function of the volume, with the line
having a slope of C; = kJ/A?. Possible values of Pand V are as shown in Fig. 4.10 for
an expansion. Regardless of what substance is inside, any process must proceed along the
line in the P-V diagram. The work term in a quasi-equilibrium process then follows as

2
W = / P dV = area under the process curve
1

1

1Wz=2

£+ BV — W)

For a contraction instead of an expansion, the process would proceed in the opposite
direction from the initial point 1 along a line of the same slope shown in Fig. 4.10.

FIGURE 4.9 Sketch of the physical system for Example 4.2.
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FIGURE 4.10 The process curve
showing possible P~V combinations
v for Example 4.2.

EXAMPLE 4.3 The cylinder/piston setup of Example 4.2 contains 0.5 kg of ammonia at —20°C with
a quality of 25%. The ammonia is now heated to +20°C, at which state the volume
is observed to be 1.41 times larger. Find the final pressure and the work the ammonia
produced.

Solution

The forces acting on the piston, the gravitation constant, the external atmosphere at con-
stant pressure, and the linear spring give a linear relation between Pand (V).

State I. (T, x1) from Table B.2.1
P, = Py = 190.2 kPa
Vi = Vr+ XV = 0.001504 + 0.25 x 0.621 84 = 0.156 96 m* /kg

State 2 (B, v = 1.41 v; = 1.41 x 0.156 96 = 0.2213 m3/kg)
Table B.2.2 state very close to P, = 600 kPa

Process:. P = C;+ Gv

The work term can now be integrated, knowing £ versus v, and can be seen as the area in
the P-vdiagram, shown in Fig. 4.11.

2 2
1
1[/[/22/ PdV:/ Pm dv = area = mz (B + B) (v — v)
1 1

1
= 0.5kg 5 (190.2 + 600) kPa (0.2213 — 0.156 96) m®/kg

=12.71K]
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FIGURE 4.11 Diagrams for Example 4.3.

EXAMPLE 4.4 The piston/cylinder setup shown in Fig. 4.12 contains 0.1 kg of water at 1000 kPa, 500°C.
The water is now cooled with a constant force on the piston until it reaches half the initial
volume. After this it cools to 25°C while the piston is against the stops. Find the final water
pressure and the work in the overall process, and show the process in a 2-v diagram.

Solution

We recognize that this is a two-step process, one of constant 2and one of constant V. This
behavior is dictated by the construction of the device.

State I (P, T) From Table B.1.3; ; = 0.354 11 m%/kg

Process 1-1a: P = constant = F/A
la-2: v=constant = v, = 1 = 1 /2

State 22 (T, v» = w/2 = 0.177 06 m%/kg)

From Table B.1.1, v, < v, so the state is two phase and P, = Py = 3.169 kPa.

2 2
IVVZZ/ PdV:m/ PdVZmPI(V]a_Vl)+0
1

1
= 0.1kg x 1000 kPa (0.177 06 — 0.345 11) m®/kg = —17.7k]J

Note that the work done from 1ato 2 is zero (no change in volume), as shown in Fig. 4.13.

FIGURE 4.12 Sketch for Example 4.4.
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FIGURE 4.13
Diagrams for Example
4.4,
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In this section we have discussed boundary movement work in a quasi-equilibrium
process. We should also realize that there may very well be boundary movement work in
a nonequilibrium process. Then the total force exerted on the piston by the gas inside the
cylinder, /4, does not equal the external force, Fy, and the work is not given by Eq. 4.3.
The work can, however, be evaluated in terms of Fi or, dividing by area, an equivalent

external pressure, Fry. The work done at the moving boundary in this case is
W= FyudL= FudV (4.7

Evaluation of Eq. 4.7 in any particular instance requires a knowledge of how the external
force or pressure changes during the process.

EXAMPLE 4.5

Py

FIGURE 4.14
Example of a
nonequilibrium process.

Consider the system shown in Fig. 4.14, in which the piston of mass m, is initially held in
place by a pin. The gas inside the cylinder is initially at pressure 7 and volume V;. When
the pin is released, the external force per unit area acting on the system (gas) boundary is
comprised of two parts:

Pext = Eext/A: R)"’mpg/A

Calculate the work done by the system when the piston has come to rest.

After the piston is released, the system is exposed to the boundary pressure equal to
P, which dictates the pressure inside the system, as discussed in Section 2.8 in connection
with Fig. 2.9. We further note that neither of the two components of this external force will
change with a boundary movement, since the cylinder is vertical (gravitational force) and
the top is open to the ambient surroundings (movement upward merely pushes the air out
of the way). If the initial pressure P, is greater than that resisting the boundary, the piston
will move upward at a finite rate, that is, in a nonequilibrium process, with the cylinder
pressure eventually coming to equilibrium at the value F.y. If we were able to trace the
average cylinder pressure as a function of time, it would typically behave as shown in
Fig. 4.15. However, the work done by the system during this process is done against the
force resisting the boundary movement and is therefore given by Eq. 4.7. Also, since the
external force is constant during this process, the result is

2
lwz:/ Pac dV = Poa(Vs — V)
1

where I is greater than V/j, and the work done by the system is positive. If the initial
pressure had been less than the boundary pressure, the piston would have moved downward,
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FIGURE 4.15
Cylinder pressure as a
function of time.

Time

compressing the gas, with the system eventually coming to equilibrium at Py, at a volume
less than the initial volume, and the work would be negative, that is, done on the system
by its surroundings.

In-Text Concept Questions

c. What is roughly the relative magnitude of the work in process 1-2c¢ versus process
1-2ashown in Fig. 4.87

d. Helium gas expands from 125 kPa, 350 K, and 0.25 m® to 100 kPa in a polytropic
process with 7= 1.667. Is the work positive, negative, or zero?

e. Anideal gas goes through an expansion process in which the volume doubles. Which
process will lead to the larger work output: an isothermal process or a polytropic
proces with n= 1.257

4.4) OTHER SYSTEMS THAT INVOLVE WORK

In the preceding section we considered the work done at the moving boundary of a sim-
ple compressible system during a quasi-equilibrium process and during a nonequilibrium
process. There are other types of systems in which work is done at a moving boundary. In
this section we briefly consider three such systems: a stretched wire, a surface film, and
electrical work.

Consider as a system a stretched wire that is under a given tension J . When the length
of the wire changes by the amount dZ, the work done by the system is

SW=-9dL (4.8)

The minus sign is necessary because work is done by the system when dL is negative. This
equation can be integrated to have

2
lwz:—/ T dL (4.9)
1

The integration can be performed either graphically or analytically if the relation between J°
and Z is known. The stretched wire is a simple example of the type of problem in solid-body
mechanics that involves the calculation of work.
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EXAMPLE 4.6

FIGURE 4.16
Schematic arrangement
showing work done on a
surface film.

A metallic wire of initial length 7 is stretched. Assuming elastic behavior, determine the
work done in terms of the modulus of elasticity and the strain.
Let o = stress, e = strain, and £ = the modulus of elasticity.

g
O Z = Fe
Therefore,

9 = AFe

From the definition of strain,
dL
de = —
e I

Therefore,

§W = -JdL = — AFeL, de

e AEL
W:—AELO/ ede= — 0

e=0

CE

Now consider a system that consists of a liquid film with a surface tension &. A
schematic arrangement of such a film, maintained on a wire frame, one side of which can
be moved, is shown in Fig. 4.16. When the area of the film is changed, for example, by
sliding the movable wire along the frame, work is done on or by the film. When the area
changes by an amount @A, the work done by the system is

SW=-%dA (4.10)

For finite changes,
2
IWZ:—/ I dA (4.11)
1

We have already noted that electrical energy flowing across the boundary of a system
is work. We can gain further insight into such a process by considering a system in which
the only work mode is electrical. Examples of such a system include a charged condenser,
an electrolytic cell, and the type of fuel cell described in Chapter 1. Consider a quasi-
equilibrium process for such a system, and during this process let the potential difference
be € and the amount of electrical charge that flows into the system be dZ. For this quasi-
equilibrium process the work is given by the relation

SW=-¢€dz (4.12)

Wire frame ~
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Since the current, 7 equals dZ/dt (where ¢ = time), we can also write

sW=—Eidt
2
1W2=—/ Ei dr (4.13)
1
Equation 4.13 may also be written as a rate equation for work (power):
Y
W=—=-%€i 4.14
7t i (4.14)

Since the ampere (electric current) is one of the fundamental units in the International
System and the watt was defined previously, this relation serves as the definition of the
unit for electric potential, the volt (V), which is one watt divided by one ampere.

4.5| CONCLUDING REMARKS REGARDING WORK

The similarity of the expressions for work in the three processes discussed in Section 4.4
and in the processes in which work is done at a moving boundary should be noted. In each
of these quasi-equilibrium processes, work is expressed by the integral of the product of an
intensive property and the change of an extensive property. The following is a summary list
of these processes and their work expressions:

2
Simple compressible system 1 Wy = / Pdv
1
2
Stretched wire Wy = — / TJdL
1
2
Surface film Wy = — / S dA
1

2
System in which the work is completely electrical ~— ; Wy = — / €dz (4.15)
1

Although we will deal primarily with systems in which there is only one mode of
work, it is quite possible to have more than one work mode in a given process. Thus, we
could write

SW=PdV-FTdL-FdA-€dZ+ - (4.16)

where the dots represent other products of an intensive property and the derivative of a
related extensive property. In each term the intensive property can be viewed as the driving
force that causes a change to occur in the related extensive property, which is often termed
the displacement. Just as we can derive the expression for power for the single point force
in Eq. 4.2, the rate form of Eq. 4.16 expresses the power as
o dwW . . .
W:F:PV—QV—SJA—%Z—FM (4.17)
It should also be noted that many other forms of work can be identified in processes
that are not quasi-equilibrium processes. For example, there is the work done by shearing
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FIGURE 4.17
Example of a process
involving a change of
volume for which the
work is zero.

FIGURE 4.18

Example showing how
selection of the system
determines whether work
is involved in a process.

boundary ]

| |
|
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| |
| |

(a) (b)

forces in the friction in a viscous fluid or the work done by a rotating shaft that crosses the
system boundary.

The identification of work is an important aspect of many thermodynamic problems.
We have already noted that work can be identified only at the boundaries of the system. For
example, consider Fig. 4.17, which shows a gas separated from the vacuum by a membrane.
Let the membrane rupture and the gas fill the entire volume. Neglecting any work associated
with the rupturing of the membrane, we can ask whether work is done in the process. If we
take as our system the gas and the vacuum space, we readily conclude that no work is done
because no work can be identified at the system boundary. If we take the gas as a system, we
do have a change of volume, and we might be tempted to calculate the work from the integral

2
/ Pdv
1

However, this is not a quasi-equilibrium process, and therefore the work cannot be
calculated from this relation. Because there is no resistance at the system boundary as the
volume increases, we conclude that for this system no work is done in this process of filling
the vacuum.

Another example can be cited with the aid of Fig. 4.18. In Fig. 4.18a the system
consists of the container plus the gas. Work crosses the boundary of the system at the point
where the system boundary intersects the shaft, and this work can be associated with the
shearing forces in the rotating shaft. In Fig. 4.185 the system includes the shaft and the
weight as well as the gas and the container. Therefore, no work crosses the system boundary
as the weight moves downward. As we will see in the next chapter, we can identify a change
of potential energy within the system, but this should not be confused with work crossing
the system boundary.

Gas
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