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5.6| THE CONSTANT-VOLUME AND
CONSTANT-PRESSURE SPECIFIC HEATS

Inthis section we will consider a homogeneous phase of a substance of constant composition.
This phase may be a solid, a liquid, or a gas, but no change of phase will occur. We will then
define a variable termed the specific heat, the amount of heat required per unit mass to raise
the temperature by one degree. Since it would be of interest to examine the relation between
the specific heat and other thermodynamic variables, we note first that the heat transfer
is given by Eq. 5.10. Neglecting changes in kinetic and potential energies, and assuming
a simple compressible substance and a quasi-equilibrium process, for which the work in
Eq. 5.10 is given by Eq. 4.2, we have

8Q=dU+§W=dU+ PdV

We find that this expression can be evaluated for two separate special cases:

1. Constant volume, for which the work term (P dV) is zero, so that the specific heat
(at constant volume) is

_ L3Oy _1(3U\ _ (du
G = E<ﬁ>f m(fﬂ’)ﬁ <8T>V 19

2. Constant pressure, for which the work term can be integrated and the resulting PV’
terms at the initial and final states can be associated with the internal energy terms,
as in Section 5.5, thereby leading to the conclusion that the heat transfer can be
expressed in terms of the enthalpy change. The corresponding specific heat (at constant

pressure) is
1/80 1 (0H ah
C,— _<_) _ _<_) _ <_> (5.15)
m\sT ), m\dT), ar),

Note that in each of these special cases, the resulting expression, Eq. 5.14 or 5.15,
contains only thermodynamic properties, from which we conclude that the constant-volume
and constant-pressure specific heats must themselves be thermodynamic properties. This
means that, although we began this discussion by considering the amount of heat transfer
required to cause a unit temperature change and then proceeded through a very specific
development leading to Eq. 5.14 (or 5.15), the result ultimately expresses a relation among
a set of thermodynamic properties and therefore constitutes a definition that is independent
of the particular process leading to it (in the same sense that the definition of enthalpy in the
previous section is independent of the process used to illustrate one situation in which the
property is useful in a thermodynamic analysis). As an example, consider the two identical
fluid masses shown in Fig. 5.9. In the first system 100 kJ of heat is transferred to it, and in
the second system 100 k] of work is done on it. Thus, the change of internal energy is the
same for each, and therefore the final state and the final temperature are the same in each. In
accordance with Eq. 5.14, therefore, exactly the same value for the average constant-volume
specific heat would be found for this substance for the two processes, even though the two
processes are very different as far as heat transfer is concerned.
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FIGURE 5.9 Sketch
showing two ways in
which a given AU/may
be achieved.
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As a special case, consider either a solid or a liquid. Since both of these phases are nearly
incompressible,

dh=du+ d(Pv) ~ du+ vdP (5.16)
Also, for both of these phases, the specific volume is very small, such that in many cases
dh=~ du~ CdT (5.17)

where C is either the constant-volume or the constant-pressure specific heat, as the two
would be nearly the same. In many processes involving a solid or a liquid, we might further
assume that the specific heat in Eq. 5.17 is constant (unless the process occurs at low
temperature or over a wide range of temperatures). Equation 5.17 can then be integrated to

hy —h ~uy—u ~ C(L — 1) (5.18)

Specific heats for various solids and liquids are listed in Tables A.3, A.4 and F.2, E.3.

In other processes for which it is not possible to assume constant specific heat, there
may be a known relation for C as a function of temperature. Equation 5.17 could then also
be integrated.

5.7| THE INTERNAL ENERGY, ENTHALPY,

AND SPECIFIC HEAT OF IDEAL GASES

In general, for any substance the internal energy zdepends on the two independent properties
specifying the state. For a low-density gas, however, u depends primarily on 7" and much
less on the second property, P or v. For example, consider several values for superheated
vapor steam from Table B.1.3, shown in Table 5.1. From these values, it is evident that u
depends strongly on 7 but not much on £ Also, we note that the dependence of zon Pis

TABLE 5.1
Internal Energy for Superheated Vapor Steam
P, kPa
I°c 10 100 500 1000
200 2661.3 2658.1 2642.9 2621.9
700 3479.6 3479.2 3477.5 3475.4
1200 4467.9 4467.7 4466.8 4465.6
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less at low pressure and is much less at high temperature; that is, as the density decreases,
so does dependence of zon P (or v). It is therefore reasonable to extrapolate this behavior
to very low density and to assume that as gas density becomes so low that the ideal-gas
model is appropriate, internal energy does not depend on pressure at all but is a function
only of temperature. That is, for an ideal gas,

Pv=RT and u= f(T)only (5.19)

The relation between the internal energy « and the temperature can be established by
using the definition of constant-volume specific heat given by Eq. 5.14:

Ju
Cr= (ﬁ)v

Because the internal energy of an ideal gas is not a function of specific volume, for an ideal
gas we can write

du
CVO - ﬁ
du= CydT (5.20)

where the subscript 0 denotes the specific heat of an ideal gas. For a given mass m,
dU=mCy dT (5.21)

From the definition of enthalpy and the equation of state of an ideal gas, it follows
that

h=u+ Pv=u+ RT (5.22)

Since R is a constant and z is a function of temperature only, it follows that the
enthalpy, 4, of an ideal gas is also a function of temperature only. That is,

h= F(T) (5.23)

The relation between enthalpy and temperature is found from the constant-pressure specific
heat as defined by Eq. 5.15:
dh
‘= (57)
aT),

Since the enthalpy of an ideal gas is a function of the temperature only and is independent
of the pressure, it follows that

dh
dh = Cp dT (5.24)
For a given mass m,
dH =mCp dT (5.25)

The consequences of Egs. 5.20 and 5.24 are demonstrated in Fig. 5.10, which shows
two lines of constant temperature. Since internal energy and enthalpy are functions of
temperature only, these lines of constant temperature are also lines of constant internal
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FIGURE 5.10 P-v

diagram for an ideal gas.

FIGURE 5.11 Heat
capacity for some gases
as a function of
temperature.
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energy and constant enthalpy. From state 1 the high temperature can be reached by a variety
of paths, and in each case the final state is different. However, regardless of the path, the
change in internal energy is the same, as is the change in enthalpy, for lines of constant
temperature are also lines of constant v and constant A.

Because the internal energy and enthalpy of an ideal gas are functions of temperature
only, it also follows that the constant-volume and constant-pressure specific heats are also
functions of temperature only. That is,

Co= F(T). Cp= £(D) (5.26)

Because all gases approach ideal-gas behavior as the pressure approaches zero, the ideal-gas
specific heat for a given substance is often called the zero-pressure specific heat, and the
zero-pressure, constant-pressure specific heat is given the symbol Cy. The zero-pressure,
constant-volume specific heat is given the symbol Cy. Figure 5.11 shows Cyy as a function
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of temperature for a number of substances. These values are determined by the techniques
of statistical thermodynamics and will not be discussed here. A brief summary presentation
of this subject is given in Appendix C. It is noted there that the principal factor causing
specific heat to vary with temperature is molecular vibration. More complex molecules have
multiple vibrational modes and therefore show greater temperature dependency, as is seen
in Fig. 5.11. This is an important consideration when deciding whether or not to account
for specific heat variation with temperature in any particular application.

Avery important relation between the constant-pressure and constant-volume specific
heats of an ideal gas may be developed from the definition of enthalpy:

h=u+ Pv=u+ RT

Differentiating and substituting Eqs. 5.20 and 5.24, we have

dh = du+ RdT
Coodl = CyodT + RdT

Therefore,

Con—Co=R (5.27)
On a mole basis this equation is written

Co—Co=FR (5.28)

This tells us that the difference between the constant-pressure and constant-volume specific
heats of an ideal gas is always constant, though both are functions of temperature. Thus, we
need examine only the temperature dependency of one, and the other is given by Eq. 5.27.

Let us consider the specific heat Cyy. There are three possibilities to examine. The
situation is simplest if we assume constant specific heat, that is, no temperature dependence.
Then it is possible to integrate Eq. 5.24 directly to

hy — = Cpo(L — 1) (5.29)

We note from Fig. 5.11 the circumstances under which this will be an accurate model. It
should be added, however, that it may be a reasonable approximation under other conditions,
especially if an average specific heat in the particular temperature range is used in Eq. 5.29.
Values of specific heat at room temperature and gas constants for various gases are given
in Table A.5 and F.4.

The second possibility for the specific heat is to use an analytical equation for C, as
a function of temperature. Because the results of specific-heat calculations from statistical
thermodynamics do not lend themselves to convenient mathematical forms, these results
have been approximated empirically. The equations for Cjy as a function of temperature are
listed in Table A.6 for a number of gases.

The third possibility is to integrate the results of the calculations of statistical thermo-
dynamics from an arbitrary reference temperature to any other temperature 7 and to define
a function

T
hr= [ CpdT
To



THE INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEAT OF IDEAL GASES MW 151

This function can then be tabulated in a single-entry (temperature) table. Then, between
any two states 1 and 2,

I i
== | Cwdl—| Cudl=hy—hy (5.30)
V) Ty

and it is seen that the reference temperature cancels out. This function A7 (and a similar
function uy = hy — R7T) is listed for air in Table A.7 and E.5. These functions are listed for
other gases in Table A.8 and F.6.

To summarize the three possibilities, we note that using the ideal-gas tables, Tables
A.7 and A.8, gives us the most accurate answer, but that the equations in Table A.6 would
give a close empirical approximation. Constant specific heat would be less accurate, except
for monatomic gases and gases below room temperature. It should be remembered that all
these results are part of the ideal-gas model, which in many of our problems is not a valid
assumption for the behavior of the substance.

EXAMPLE 5.8

Calculate the change of enthalpy as 1 kg of oxygen is heated from 300 to 1500 K. Assume
ideal-gas behavior.

Solution

For an ideal gas, the enthalpy change is given by Eq. 5.24. However, we also need to make
an assumption about the dependence of specific heat on temperature. Let us solve this
problem in several ways and compare the answers.

Our most accurate answer for the ideal-gas enthalpy change for oxygen between 300
and 1500 K would be from the ideal-gas tables, Table A.8. This result is, using Eq. 5.30,

hy — by = 1540.2 — 273.2 = 1267.0 k] /kg

The empirical equation from Table A.6 should give a good approximation to this
result. Integrating Eq. 5.24, we have

T ()
]12—]112/ Cpg dTZ/ CPQ(G)XIOOOdQ
h o

0.0001 0.54 0.33 ,1%=1°
:1000[0.889— 0% + 6% — 94}

2 3 4 0,=0.3
= 1241.5Kk] /kg
which is lower than the first result by 2.0%.

If we assume constant specific heat, we must be concerned about what value we are
going to use. If we use the value at 300 K from Table A.5, we find, from Eq. 5.29, that

hy — Iy = Cpo(B — T;) = 0.922 x 1200 = 1106.4 k] /kg

which is low by 12.7%. However, suppose we assume that the specific heat is constant
at its value at 900 K, the average temperature. Substituting 900 K into the equation for
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specific heat from Table A.6, we have
Cpo = 0.88 — 0.0001(0.9) + 0.54(0.9)* — 0.33(0.9)°
= 1.0767kJ/kgK
Substituting this value into Eq. 5.29 gives the result
hy — by = 1.0767 x 1200 = 1292.1 k] /kg

which is high by about 2.0%, a much closer result than the one using the room temperature
specific heat. It should be kept in mind that part of the model involving ideal gas with
constant specific heat also involves a choice of what value is to be used.

EXAMPLE 5.9

A cylinder fitted with a piston has an initial volume of 0.1 m® and contains nitrogen at 150
kPa, 25°C. The piston is moved, compressing the nitrogen until the pressure is 1 MPa and
the temperature is 150°C. During this compression process heat is transferred from the
nitrogen, and the work done on the nitrogen is 20 kJ. Determine the amount of this heat
transfer.

Control mass: ~ Nitrogen.
Initial state: Py, Ty, Vy; state 1 fixed.
Final state. P, T»; state 2 fixed.
Process.  Work input known.
Model:  Ideal gas, constant specific heat with value at 300 K, Table A.5.

Analysis
From the first law we have

102 = m(up — wy) + 1 Wy
Solution

The mass of nitrogen is found from the equation of state with the value of R from
Table A.5:

PV 150kPals 0Nms
M= = SOkaXO N 0.1695kg
0.2968L x 298.15K
kgK

Assuming constant specific heat as given in Table A.5, we have

10, =mCy(L — Th) +1 W

k]
= 0.1695 kg x 0.745kg—K x (150 — 25) K — 20.0

=15.8—-20.0=—4.2Kk]
It would, of course, be somewhat more accurate to use Table A.8 than to assume constant

specific heat (room temperature value), but often the slight increase in accuracy does not
warrant the added difficulties of manually interpolating the tables.
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EXAMPLE 5.9E A cylinder fitted with a piston has an initial volume of 2 ft* and contains nitrogen at 20
Ibf/in.?, 80 F. The piston is moved, compressing the nitrogen until the pressure is 160
1bf/in.? and the temperature is 300 F. During this compression process heat is transferred
from the nitrogen, and the work done on the nitrogen is 9.15 Btu. Determine the amount
of this heat transfer.

Control mass:  Nitrogen.
Initial state: Py, Ty, V7; state 1 fixed.
Final state: P, T»; state 2 fixed.
Process.  Work input known.
Model: 1deal gas, constant specific heat with value at 540 R, Table E4.

Analysis
First law: 10y = m(up — wy) + 1 W

Solution

The mass of nitrogen is found from the equation of state with the value of R from Table

F4.
Ibf in.?
202 1aa 5 2o g
PV in.? t
A5——— 40 R
55 5lbm 7 x 540

Assuming constant specific heat as given in Table F.4,

10 =mCyp(L— Th) +1 W,
Btu
Ibm R

=7.53 -9.15 = —-1.62 Btu

= 0.19341bm x 0.177 x (300 —80) R — 9.15

It would, of course, be somewhat more accurate to use Table F.6 than to assume constant
specific heat (room temperature value), but often the slight increase in accuracy does not
warrant the added difficulties of manually interpolating the tables.

In-Text Concept Questions

g. To determine vor u for some liquid or solid, is it more important that I know Por 77
h. To determine vor  for an ideal gas, is it more important that I know Por 7?

i. I heat 1 kg of a substance at constant pressure (200 kPa) 1 degree. How much
heat is needed if the substance is water at 10°C, steel at 25°C, air at 325 K, or ice
at —10°C.
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5.8| THE FIRST LAW AS A RATE EQUATION

We frequently find it desirable to use the first law as a rate equation that expresses either the
instantaneous or average rate at which energy crosses the control surface as heat and work
and the rate at which the energy of the control mass changes. In so doing we are departing
from a strictly classical point of view, because basically classical thermodynamics deals
with systems that are in equilibrium, and time is not a relevant parameter for systems that
are in equilibrium. However, since these rate equations are developed from the concepts of
classical thermodynamics and are used in many applications of thermodynamics, they are
included in this book. This rate form of the first law will be used in the development of the
first law for the control volume in Section 6.2, and in this form the first law finds extensive
applications in thermodynamics, fluid mechanics, and heat transfer.

Consider a time interval §¢ during which an amount of heat § Q crosses the control
surface, an amount of work § ¥ is done by the control mass, the internal energy change is
AU, the kinetic energy change is AKE, and the potential energy change is APE. From the
first law we can write

AU+ AKE+ APE=60Q0—-68§W

Dividing by &£ we have the average rate of energy transfer as heat work and increase of the
energy of the control mass:

AU AKE APE  §Q §W

A TR VAR TR
Taking the limit for each of these quantities as & # approaches zero, we have

AU dU i A(KE) _ d(KE) i A(PE) _ d(PE)

m—=— m——o m—-=—
500 87 PR T= Y dt = sts0 St dt
5Q .
im — = () (the heat transfer rate)
8t—0 8t

N4 .
lim — = ¥/ (the power)
§t—0 o8t

Therefore, the rate equation form of the first law is

dU  dKE)  dPE) .
T Ta TTa T (31

We could also write this in the form

— =Q-W (5.32)
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EXAMPLE 5.10

During the charging of a storage battery, the current 7is 20 A and the voltage € is 12.8
V. The rate of heat transfer from the battery is 10 W. At what rate is the internal energy
increasing?

Solution

Since changes in kinetic and potential energy are insignificant, the first law can be written
as a rate equation in the form of Eq. 5.31:

dU . .
=9
W="%¢i=-128x20=—256W = —256]/s
Therefore,
Cff_lt] = O— W=—-10— (—256) = 246]/s

EXAMPLE 5.11

FIGURE 5.12 Sketch
for Example 5.11.

A 25-kg cast-iron wood-burning stove, shown in Fig. 5.12, contains 5 kg of soft pine wood
and 1 kg of air. All the masses are at room temperature, 20°C, and pressure, 101 kPa. The
wood now burns and heats all the mass uniformly, releasing 1500 W. Neglect any air flow
and changes in mass of wood and heat losses. Find the rate of change of the temperature
(dT/dp and estimate the time it will take to reach a temperature of 75°C.

Solution

C.V.: The iron, wood and air.

This is a control mass.

Energy equation rate form: E=0-W

We have no changes in kinetic or potential energy and no change in mass, so

U = myi; tzir + Myood Uwood + Miron Uiron

E = U = My ltair + Myood wood + Miron iron

T
= (Mair Cvair + Myood Cwood + Miron Ciron) ar
Now the energy equation has zero work, an energy release of (), and becomes
ar .
(122 Cvair + Mhwood Cwood + Miron Ciron) ar =0-0
ar 0
dt (i Cyair + Mwood Gwood + Mizon Ciron)
1500 w

= — 0.0828K
1 0.717 + 5 x 1.38 + 25 x 0.42 kg (kJ/kg) /s
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Assuming the rate of temperature rise is constant, we can find the elapsed time as

dT dT
AT = —dt = —At
dt dt
AT 75-20 .
dt

5.9| CONSERVATION OF MASS

In the previous sections we considered the first law of thermodynamics for a control mass
undergoing a change of state. A control mass is defined as a fixed quantity of mass. The
question now is whether the mass of such a system changes when its energy changes. If it
does, our definition of a control mass as a fixed quantity of mass is no longer valid when
the energy changes.

We know from relativistic considerations that mass and energy are related by the
well-known equation

E=md (5.33)

where ¢ = velocity of light and £ = energy. We conclude from this equation that the mass
of a control mass does change when its energy changes. Let us calculate the magnitude of
this change of mass for a typical problem and determine whether this change in mass is
significant.

Consider a rigid vessel that contains a 1-kg stoichiometric mixture of a hydrocarbon
fuel (such as gasoline) and air. From our knowledge of combustion, we know that after
combustion takes place, it will be necessary to transfer about 2900 k] from the system to
restore it to its initial temperature. From the first law

1=U—U+ W,

we conclude that since ; W, = 0 and ; @» = —2900 kJ, the internal energy of this system
decreases by 2900 k] during the heat transfer process. Let us now calculate the decrease in
mass during this process using Eq. 5.33.

The velocity of light, ¢, is 2.9979 x 108 m/s. Therefore,

2900 k] = 2900000 = m (kg) x (2.9979 x 10° m/s)”
and so
m=3.23 x 107 kg

Thus, when the energy of the control mass decreases by 2900 kJ, the decrease in mass is
3.23 x 107! kg.

A change in mass of this magnitude cannot be detected by even our most accurate
chemical balance. Certainly, a fractional change in mass of this magnitude is beyond the
accuracy required in essentially all engineering calculations. Therefore, if we use the laws
of conservation of mass and conservation of energy as separate laws, we will not introduce
significant error into most thermodynamic problems and our definition of a control mass as
having a fixed mass can be used even though the energy changes.



