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FIGURE 7.20
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constitute a violation of the second law, and we conclude that our initial assumption (that
the irreversible engine is more efficient than a reversible engine) is incorrect. Therefore, we
cannot have an irreversible engine that is more efficient than a reversible engine operating
between the same two reservoirs.

Second Proposition

All engines that operate on the Carnot cycle between two given constant-temperature reser-
voirs have the same efficiency. The proof of this proposition is similar to the proof just
outlined, which assumes that there is one Carnot cycle that is more efficient than another
Carnot cycle operating between the same temperature reservoirs. Let the Carnot cycle with
the higher efficiency replace the irreversible cycle of the previous argument, and let the
Carnot cycle with the lower efficiency operate as the refrigerator. The proof proceeds with
the same line of reasoning as in the first proposition. The details are left as an exercise for
the student.

7.7| THE THERMODYNAMIC TEMPERATURE SCALE

Indiscussing temperature in Chapter 2, we pointed out that the zeroth law of thermodynamics
provides a basis for temperature measurement, but that a temperature scale must be defined
in terms of a particular thermometer substance and device. A temperature scale that is
independent of any particular substance, which might be called an absolute temperature
scale, would be most desirable. In the preceding paragraph we noted that the efficiency of
a Carnot cycle is independent of the working substance and depends only on the reservoir
temperatures. This fact provides the basis for such an absolute temperature scale called
the thermodynamic scale. Since the efficiency of a Carnot cycle is a function only of the
temperature, it follows that

Nihermal = 1 — % =1—-y (I, Tn) (7.3)

where v designates a functional relation.
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There are many functional relations that could be chosen to satisfy the relation given
in Eq. 7.3. For simplicity, the thermodynamic scale is defined as
Qu _ T
oL I,
Substituting this definition into Eq. 7.3 results in the following relation between the thermal
efficiency of a Carnot cycle and the absolute temperatures of the two reserviors.

(7.4)

Nthermal = 1 — G =1- TH (7.5)
It should be noted, however, that the definition of Eq. 7.4 is not complete since it does
not specify the magnitude of the degree of temperature or a fixed reference point value. In
the following section, we will discuss in greater detail the ideal-gas absolute temperature
introduced in Section 3.6 and show that this scale satisfies the relation defined by Eq. 7.4.

7.8| THE IDEAL-GAS TEMPERATURE SCALE

In this section we reconsider in greater detail the ideal-gas temperature scale introduced
in Section 3.6. This scale is based on the observation that as the pressure of a real gas
approaches zero, its equation of state approaches that of an ideal gas:

Pv=RT

It will be shown that the ideal-gas temperature scale satisfies the definition of thermo-
dynamic temperature given in the preceding section by Eq. 7.4. But first, let us consider how
an ideal gas might be used to measure temperature in a constant-volume gas thermometer,
shown schematically in Fig. 7.21.

Let the gas bulb be placed in the location where the temperature is to be measured,
and let the mercury column be adjusted so that the level of mercury stands at the reference

L ( Capillary tube

Gas bulb

—A4

lg L Mercury column

FIGURE 7.21

Schematic diagram of a
constant-volume gas
thermometer.
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mark A. Thus, the volume of the gas remains constant. Assume that the gas in the capillary
tube is at the same temperature as the gas in the bulb. Then the pressure of the gas, which
is indicated by the height L of the mercury column, is a measure of the temperature.

Let the pressure that is associated with the temperature of the triple point of water
(273.16 K) also be measured, and let us designate this pressure /7 , . Then, from the definition
of an ideal gas, any other temperature 7 could be determined from a pressure measurement

Phy the relation
T =273.16 (i)
Ry.

EXAMPLE 7.3  Ina certain constant-volume ideal-gas thermometer, the measured pressure at the ice point
(see Section 2.11) of water, 0°C, is 110.9 kPa and at the steam point, 100°C, is 151.5 kPa.
Extrapolating, at what Celsius temperature does the pressure go to zero (i.e., zero absolute
temperature)?

Analysis

From the ideal-gas equation of state PV = mRT at constant mass and volume, pressure
is directly proportional to temperature, as shown in Fig. 7.22,

P = CT, where T is the absolute ideal-gas temperature

P
151.5f = = = = ————————
4/"
M09 = = = = — — — — = I
PR I
— - | |
- - | |
- 4 | |
oL~ 1 1
? 0cC 100C 7T FIGURE 7.22 Plot for Example 7.3.
Solution
AP 151.5-110.9 R
Slope AT 100=0 - 0.406 kPa/°C

Extrapolating from the 0°C point to Z= 0,

110.9 kPa

- —
0= 0206 kPa/-C

= —273.15°C

establishing the relation between absolute ideal-gas Kelvin and Celsius temperature
scales.

(Note: Compatible with the subsequent present-day definition of the Kelvin and the Celsius
scale in Section 2.11.)
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FIGURE 7.23 Sketch
showing how the
ideal-gas temperature is
determined.

From a practical point of view, we have the problem that no gas behaves exactly like
an ideal gas. However, we do know that as the pressure approaches zero, the behavior of
all gases approaches that of an ideal gas. Suppose then that a series of measurements is
made with varying amounts of gas in the gas bulb. This means that the pressure measured
at the triple point, and also the pressure at any other temperature, will vary. If the indicated
temperature 7; (obtained by assuming that the gas is ideal) is plotted against the pressure
of gas with the bulb at the triple point of water, a curve like the one shown in Fig. 7.23 is
obtained. When this curve is extrapolated to zero pressure, the correct ideal-gas temperature
is obtained. Different curves might result from different gases, but they would all indicate
the same temperature at zero pressure.

We have outlined only the general features and principles for measuring temperature
on the ideal-gas scale of temperatures. Precision work in this field is difficult and laborious,
and there are only a few laboratories in the world where such work is carried on. The
International Temperature Scale, which was mentioned in Chapter 2, closely approximates
the thermodynamic temperature scale and is much easier to work with in actual temperature
measurement.

We now demonstrate that the ideal-gas temperature scale discussed earlier is, in fact,
identical to the thermodynamic temperature scale, which was defined in the discussion of
the Carnot cycle and the second law. Our objective can be achieved by using an ideal gas
as the working fluid for a Carnot-cycle heat engine and analyzing the four processes that
make up the cycle. The four state points, 1, 2, 3, and 4, and the four processes are as shown
in Fig. 7.24. For convenience, let us consider a unit mass of gas inside the cylinder. Now
for each of the four processes, the reversible work done at the moving boundary is given by
Eq. 4.3:

Sw= Pdv
Similarly, for each process the gas behavior is, from the ideal-gas relation, Eq. 3.5,
Pv=RT
and the internal energy change, from Eq. 5.20, is

du= CydT

———

Indicated temperature, 7;
@
Q
(7]
7

Pressure at triple point, Py,
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FIGURE 7.24 The

ideal-gas Carnot cycle.
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Assuming no changes in kinetic or potential energies, the first law is, from Eq. 5.7 at unit
mass,

8q=du+3sw

Substituting the three previous expressions into this equation, we have for each of the four
processes

5g = CpodT + R—VT dv (7.6)

The shape of the two isothermal processes shown in Fig. 7.23 is known, since Pris
constant in each case. The process 1-2 is an expansion at 7, such that v, is larger than ;.
Similarly, the process 34 is a compression at a lower temperature, 77, and v, is smaller than
3. The adiabatic process 2-3 is an expansion from 7 to 77, with an increase in specific
volume, while the adiabatic process 4-1 is a compression from 77 to 7, with a decrease
in specific volume. The area below each process line represents the work for that process,
as given by Eq. 4.4.

We now proceed to integrate Eq. 7.6 for each of the four processes that make up the
Carnot cycle. For the isothermal heat addition process 1-2, we have

gu=1¢ =0+ RTy In— (7.7

V2
41

For the adiabatic expansion process 2-3 we divide by T to get,

1
0:/ SO0 yry g2 (7.8)
. T

H V2
For the isothermal heat rejection process 3-4,
qr = —3qs = —0-— RTL 111E
V3

— VRT; 111%3l (7.9)
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and for the adiabatic compression process 4-1 we divide by T to get,

Tn
0:/ S0 gy pm (7.10)
r, T 7

From Eqs. 7.8 and 7.10, we get

Ty
f S0 ur— rm B - _pm
T T V2 Vy

Therefore,
V3 Vy V3 V2
== 2 or — == (7.11)
V2 141 Vy 41

Thus, from Egs. 7.7 and 7.9 and substituting Eq. 7.11, we find that

V2
@ RTy ln;1 - ﬁ
9.  RT; n2
V4

which is Eq. 7.4, the definition of the thermodynamic temperature scale in connection with
the second law.

7.9| IDEAL VERSUS REAL MACHINES

Following the definition of the thermodynamic temperature scale by Eq. 7.4, it was noted
that the thermal efficiency of a Carnot cycle heat engine is given by Eq. 7.5. It also follows
that a Carnot cycle operating as a refrigerator or heat pump will have a COP expressed as
O - i

Q- Qp Camot Ty —T;

_ Qu - Ty
© Qu— Qq Camot Ty —T;

For all three “efficiencies” in Eqs. 7.5, 7.12, and 7.13, the first equality sign is the definition
with the use of the energy equation and thus is always true. The second equality sign is valid
only if the cycle is reversible, that is, a Carnot cycle. Any real heat engine, refrigerator, or
heat pump will be less efficient, such that

B

(7.12)

ﬁ/

(7.13)

T
Nreal thermal = 1 — % <1-— T]L{
T
IBreal = OL < L
QH - QL T H— T L
/ OH T H
IBreal =

<
Ou—0; ~ Ty—T1;

A final point needs to be made about the significance of absolute zero temperature
in connection with the second law and the thermodynamic temperature scale. Consider a
Carnot-cycle heat engine that receives a given amount of heat from a given high-temperature
reservoir. As the temperature at which heat is rejected from the cycle is lowered, the net work
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output increases and the amount of heat rejected decreases. In the limit, the heat rejected is
zero, and the temperature of the reservoir corresponding to this limit is absolute zero.

Similarly, for a Carnot-cycle refrigerator, the amount of work required to produce
a given amount of refrigeration increases as the temperature of the refrigerated space de-
creases. Absolute zero represents the limiting temperature that can be achieved, and the
amount of work required to produce a finite amount of refrigeration approaches infinity as
the temperature at which refrigeration is provided approaches zero.

EXAMPLE 7.4

Let us consider the heat engine, shown schematically in Fig. 7.25, that receives a heat-
transfer rate of 1 MW at a high temperature of 550°C and rejects energy to the ambient
surroundings at 300 K. Work is produced at a rate of 450 kW. We would like to know
how much energy is discarded to the ambient surroundings and the engine efficiency and
compare both of these to a Carnot heat engine operating between the same two reservoirs.

\

FIGURE 7.25 A heat engine operating between
two constant-temperature energy reservoirs for
Example 7.4.

Solution
If we take the heat engine as a control volume, the energy equation gives
Q1 = Qu — W =1000 — 450 = 550 kW
and from the definition of efficiency
Mhermal = W/ Qpr = 450/1000 = 0.45

For the Carnot heat engine, the efficiency is given by the temperature of the reservoirs:
1 300
Neamot = 1 — — =

Ty~ 550+ 273
The rates of work and heat rejection become

= 0.635

W = ncamu Oy = 0.635 x 1000 = 635 kKW
0, = Oy — W= 1000 — 635 = 365 kW

The actual heat engine thus has a lower efficiency than the Carnot (ideal) heat engine, with
a value of 45% typical for a modern steam power plant. This also implies that the actual
engine rejects a larger amount of energy to the ambient surroundings (55%) compared
with the Carnot heat engine (36%).
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EXAMPLE 7.5

FIGURE 7.26 An air
conditioner in cooling
mode where T; is the
room.

As one mode of operation of an air conditioner is the cooling of a room on a hot day, it
works as a refrigerator, shown in Fig. 7.26. A total of 4 kW should be removed from a room
at 24°C to the outside atmosphere at 35°C. We would like to estimate the magnitude of the
required work. To do this we will not analyze the processes inside the refrigerator, which
is deferred to Chapter 11, but we can give a lower limit for the rate of work, assuming it
is a Carnot-cycle refrigerator.

Inside air
Outside air
T,
T, Evaporator A,' g ? Condenser H
Q q ) Expansion q D QH
L valve Compressor
== QL e JHD |—>
( [ — ] = K )
[ ] [ ]
An air conditioner in cooling mode
Solution
The COP is
) , T 273 + 24
B = Or dr r — 27

W 0y—0, Tyu—1T, 35-24
so the rate of work or power input will be
W= Q,/B=4/2T =0.15kW

Since the power was estimated assuming a Carnot refrigerator, it is the smallest amount
possible. Recall also the expressions for heat-transfer rates in Chapter 4. If the refrigerator
should push 4.15 kW out to the atmosphere at 35°C, the high-temperature side of it should
be at a higher temperature, maybe 45°C, to have a reasonably small-sized heat exchanger.
As it cools the room, a flow of air of less than, say, 18°C would be needed. Redoing the
COP with a high of 45°C and a low of 18°C gives 10.8, which is more realistic. A real
refrigerator would operate with a COP of the order of 5 or less.

In the previous discussion and examples, we considered the constant-temperature
energy reservoirs and used those temperatures to calculate the Carnot-cycle efficiency.
However, if we recall the expressions for the rate of heat transfer by conduction, convection,
or radiation in Chapter 4, they can all be shown as

Q=CAT (7.14)
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The constant C depends on the mode of heat transfer as

kA
Conduction: C= x Convection: C =hA
Radiation: C=eo0 A(T? + T2)(T; + To)

For more complex situations with combined layers and modes, we also recover the form in
Eq. 7.14, but with a value of C that depends on the geometry, materials, and modes of heat
transfer. To have a heat transfer, we therefore must have a temperature difference so that the
working substance inside a cycle cannot attain the reservoir temperature unless the area is
infinitely large.

7.10| ENGINEERING APPLICATIONS

The second law of thermodynamics is presented as it was developed, with some additional
comments and in a modern context. The main implication is the limits it imposes on pro-
cesses: Some processes will not occur but others will, with a constraint on the operation of
complete cycles such as heat engines and heat pumps.

Nearly all energy conversion processes that generate work (typically converted further
from mechanical to electrical work) involve some type of cyclic heat engine. These include
the engine in a car, a turbine in a power plant, or a windmill. The source of energy can be
a storage reservoir (fossil fuels that can burn, such as gasoline or natural gas) or a more
temporary form, for example, the wind kinetic energy that ultimately is driven by heat input
from the sun.

PROCESSES LIMITED BY THE ENERGY EQUATION (First Law)
POSSIBLE IMPOSSIBLE
Motion on slope -~
no initial velocity —
mg mg
mg
Bouncing ball o
ouncing ba @) o o i
* a ?time 9 l* ?time
| S— | — i |
Energy conversion Q= W+ (1 -mQ n>1
Heat engine W =nQ and n limited

Machines that violate the energy equation, say generate energy from nothing, are
called perpetual-motion machines of the first kind. Such machines have been “demon-
strated” and investors asked to put money into their development, but most of them had
some kind of energy input not easily observed (such as a small, compressed air line or
a hidden fuel supply). Recent examples are cold fusion and electrical phase imbalance;



